Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma.

Maria C Ferrández, Sandeep S V Golla, Jakoba J Eertink, Sanne E Wiegers, Gerben J C Zwezerijnen, Martijn W Heymans, Pieternella J Lugtenburg, Lars Kurch, Andreas Hüttmann, Christine Hanoun, Ulrich Dührsen, Sally F Barrington, N George Mikhaeel, Luca Ceriani, Emanuele Zucca, Sándor Czibor, Tamás Györke, Martine E D Chamuleau, Josée M Zijlstra, Ronald Boellaard
{"title":"Validation of an Artificial Intelligence-Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma.","authors":"Maria C Ferrández, Sandeep S V Golla, Jakoba J Eertink, Sanne E Wiegers, Gerben J C Zwezerijnen, Martijn W Heymans, Pieternella J Lugtenburg, Lars Kurch, Andreas Hüttmann, Christine Hanoun, Ulrich Dührsen, Sally F Barrington, N George Mikhaeel, Luca Ceriani, Emanuele Zucca, Sándor Czibor, Tamás Györke, Martine E D Chamuleau, Josée M Zijlstra, Ronald Boellaard","doi":"10.2967/jnumed.124.268191","DOIUrl":null,"url":null,"abstract":"<p><p>The aim of this study was to validate a previously developed deep learning model in 5 independent clinical trials. The predictive performance of this model was compared with the international prognostic index (IPI) and 2 models incorporating radiomic PET/CT features (clinical PET and PET models). <b>Methods:</b> In total, 1,132 diffuse large B-cell lymphoma patients were included: 296 for training and 836 for external validation. The primary outcome was 2-y time to progression. The deep learning model was trained on maximum-intensity projections from PET/CT scans. The clinical PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, SUV<sub>peak</sub>, age, and performance status. The PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, and SUV<sub>peak</sub> Model performance was assessed using the area under the curve (AUC) and Kaplan-Meier curves. <b>Results:</b> The IPI yielded an AUC of 0.60 on all external data. The deep learning model yielded a significantly higher AUC of 0.66 (<i>P</i> < 0.01). For each individual clinical trial, the model was consistently better than IPI. Radiomic model AUCs remained higher for all clinical trials. The deep learning and clinical PET models showed equivalent performance (AUC, 0.69; <i>P</i> > 0.05). The PET model yielded the highest AUC of all models (AUC, 0.71; <i>P</i> < 0.05). <b>Conclusion:</b> The deep learning model predicted outcome in all trials with a higher performance than IPI and better survival curve separation. This model can predict treatment outcome in diffuse large B-cell lymphoma without tumor delineation but at the cost of a lower prognostic performance than with radiomics.</p>","PeriodicalId":94099,"journal":{"name":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","volume":" ","pages":"1802-1807"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of nuclear medicine : official publication, Society of Nuclear Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2967/jnumed.124.268191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study was to validate a previously developed deep learning model in 5 independent clinical trials. The predictive performance of this model was compared with the international prognostic index (IPI) and 2 models incorporating radiomic PET/CT features (clinical PET and PET models). Methods: In total, 1,132 diffuse large B-cell lymphoma patients were included: 296 for training and 836 for external validation. The primary outcome was 2-y time to progression. The deep learning model was trained on maximum-intensity projections from PET/CT scans. The clinical PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, SUVpeak, age, and performance status. The PET model included metabolic tumor volume, maximum distance from the bulkiest lesion to another lesion, and SUVpeak Model performance was assessed using the area under the curve (AUC) and Kaplan-Meier curves. Results: The IPI yielded an AUC of 0.60 on all external data. The deep learning model yielded a significantly higher AUC of 0.66 (P < 0.01). For each individual clinical trial, the model was consistently better than IPI. Radiomic model AUCs remained higher for all clinical trials. The deep learning and clinical PET models showed equivalent performance (AUC, 0.69; P > 0.05). The PET model yielded the highest AUC of all models (AUC, 0.71; P < 0.05). Conclusion: The deep learning model predicted outcome in all trials with a higher performance than IPI and better survival curve separation. This model can predict treatment outcome in diffuse large B-cell lymphoma without tumor delineation but at the cost of a lower prognostic performance than with radiomics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 5 个弥漫大 B 细胞淋巴瘤外部 PET/CT 数据集验证基于人工智能的预测模型。
本研究的目的是在 5 项独立临床试验中验证之前开发的深度学习模型。该模型的预测性能与国际预后指数(IPI)和两个包含放射学 PET/CT 特征的模型(临床 PET 模型和 PET 模型)进行了比较。方法:共纳入 1,132 例弥漫大 B 细胞淋巴瘤患者:其中 296 例用于训练,836 例用于外部验证。主要结果是2年的进展时间。深度学习模型根据 PET/CT 扫描的最大强度投影进行训练。临床 PET 模型包括代谢肿瘤体积、最隆起病灶到另一病灶的最大距离、SUVpeak、年龄和表现状态。PET 模型包括代谢性肿瘤体积、最隆起病灶到另一病灶的最大距离和 SUVpeak。 模型性能通过曲线下面积(AUC)和 Kaplan-Meier 曲线进行评估。结果在所有外部数据上,IPI 的 AUC 为 0.60。深度学习模型的AUC明显更高,为0.66(P < 0.01)。在每项临床试验中,该模型始终优于 IPI。在所有临床试验中,Radiomic 模型的 AUC 一直较高。深度学习和临床 PET 模型显示出同等的性能(AUC,0.69;P > 0.05)。在所有模型中,PET 模型的 AUC 最高(AUC,0.71;P <0.05)。结论深度学习模型在所有试验中都能预测结果,其性能高于 IPI,生存曲线分离效果更好。该模型可以预测弥漫大B细胞淋巴瘤的治疗结果,而无需进行肿瘤分界,但其代价是预后效果低于放射组学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meningioma Revisited: Should Whole-Body Staging with [68Ga]Ga-DOTATOC PET/CT of High-Grade Meningiomas Become Standard Practice? SNMMI Procedure Standard/EANM Practice Guideline for Fibroblast Activation Protein (FAP) PET. Solving Challenging Puzzles: Heather Jacene Talks with Johannes Czernin About Leadership in Clinical Nuclear Medicine and the SNMMI. [11C]PS13 Demonstrates Pharmacologically Selective and Substantial Binding to Cyclooxygenase-1 in the Human Brain. Imaging of the Aging Human Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1