David Matuskey, Yanghong Yang, Mika Naganawa, Sheida Koohsari, Takuya Toyonaga, Paul Gravel, Brian Pittman, Kristen Torres, Lauren Pisani, Caroline Finn, Sophie Cramer-Benjamin, Nicole Herman, Lindsey H. Rosenthal, Cassandra J. Franke, Bridget M. Walicki, Irina Esterlis, Patrick Skosnik, Rajiv Radhakrishnan, Julie M. Wolf, Nabeel Nabulsi, Jim Ropchan, Yiyun Huang, Richard E. Carson, Adam J. Naples, James C. McPartland
{"title":"11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults","authors":"David Matuskey, Yanghong Yang, Mika Naganawa, Sheida Koohsari, Takuya Toyonaga, Paul Gravel, Brian Pittman, Kristen Torres, Lauren Pisani, Caroline Finn, Sophie Cramer-Benjamin, Nicole Herman, Lindsey H. Rosenthal, Cassandra J. Franke, Bridget M. Walicki, Irina Esterlis, Patrick Skosnik, Rajiv Radhakrishnan, Julie M. Wolf, Nabeel Nabulsi, Jim Ropchan, Yiyun Huang, Richard E. Carson, Adam J. Naples, James C. McPartland","doi":"10.1038/s41380-024-02776-2","DOIUrl":null,"url":null,"abstract":"<p>The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using <sup>11</sup>C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a <sup>11</sup>C-UCB-J PET scan. Binding potential, <i>BP</i><sub>ND</sub>, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (<i>p</i> = 0.01). All brain regions in autism had lower <sup>11</sup>C-UCB-J <i>BP</i><sub>ND</sub> compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (−15%, <i>p</i> = 0.02), with differences most pronounced in gray matter (<i>p</i> < 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (<i>r</i> = 0.67, <i>p</i> = 0.02) and multiple regions (<i>r</i>s = −0.58 to −0.82, <i>p</i>s = 0.05 to <0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"41 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02776-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using 11C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a 11C-UCB-J PET scan. Binding potential, BPND, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (p = 0.01). All brain regions in autism had lower 11C-UCB-J BPND compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (−15%, p = 0.02), with differences most pronounced in gray matter (p < 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (r = 0.67, p = 0.02) and multiple regions (rs = −0.58 to −0.82, ps = 0.05 to <0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.
期刊介绍:
Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.