Xianzhu Liu, Haozhe Xie, Shengping Zhang, Hongxun Yao, Rongrong Ji, Liqiang Nie, Dacheng Tao
{"title":"2D Semantic-Guided Semantic Scene Completion","authors":"Xianzhu Liu, Haozhe Xie, Shengping Zhang, Hongxun Yao, Rongrong Ji, Liqiang Nie, Dacheng Tao","doi":"10.1007/s11263-024-02244-y","DOIUrl":null,"url":null,"abstract":"<p>Semantic scene completion (SSC) aims to simultaneously perform scene completion (SC) and predict semantic categories of a 3D scene from a single depth and/or RGB image. Most existing SSC methods struggle to handle complex regions with multiple objects close to each other, especially for objects with reflective or dark surfaces. This primarily stems from two challenges: (1) the loss of geometric information due to the unreliability of depth values from sensors, and (2) the potential for semantic confusion when simultaneously predicting 3D shapes and semantic labels. To address these problems, we propose a Semantic-guided Semantic Scene Completion framework, dubbed SG-SSC, which involves Semantic-guided Fusion (SGF) and Volume-guided Semantic Predictor (VGSP). Guided by 2D semantic segmentation maps, SGF adaptively fuses RGB and depth features to compensate for the missing geometric information caused by the missing values in depth images, thus performing more robustly to unreliable depth information. VGSP exploits the mutual benefit between SC and SSC tasks, making SSC more focused on predicting the categories of voxels with high occupancy probabilities and also allowing SC to utilize semantic priors to better predict voxel occupancy. Experimental results show that SG-SSC outperforms existing state-of-the-art methods on the NYU, NYUCAD, and SemanticKITTI datasets. Models and code are available at https://github.com/aipixel/SG-SSC.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-024-02244-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Semantic scene completion (SSC) aims to simultaneously perform scene completion (SC) and predict semantic categories of a 3D scene from a single depth and/or RGB image. Most existing SSC methods struggle to handle complex regions with multiple objects close to each other, especially for objects with reflective or dark surfaces. This primarily stems from two challenges: (1) the loss of geometric information due to the unreliability of depth values from sensors, and (2) the potential for semantic confusion when simultaneously predicting 3D shapes and semantic labels. To address these problems, we propose a Semantic-guided Semantic Scene Completion framework, dubbed SG-SSC, which involves Semantic-guided Fusion (SGF) and Volume-guided Semantic Predictor (VGSP). Guided by 2D semantic segmentation maps, SGF adaptively fuses RGB and depth features to compensate for the missing geometric information caused by the missing values in depth images, thus performing more robustly to unreliable depth information. VGSP exploits the mutual benefit between SC and SSC tasks, making SSC more focused on predicting the categories of voxels with high occupancy probabilities and also allowing SC to utilize semantic priors to better predict voxel occupancy. Experimental results show that SG-SSC outperforms existing state-of-the-art methods on the NYU, NYUCAD, and SemanticKITTI datasets. Models and code are available at https://github.com/aipixel/SG-SSC.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.