Traffic-Aware Lightweight Hierarchical Offloading Toward Adaptive Slicing-Enabled SAGIN

Zheyi Chen;Junjie Zhang;Geyong Min;Zhaolong Ning;Jie Li
{"title":"Traffic-Aware Lightweight Hierarchical Offloading Toward Adaptive Slicing-Enabled SAGIN","authors":"Zheyi Chen;Junjie Zhang;Geyong Min;Zhaolong Ning;Jie Li","doi":"10.1109/JSAC.2024.3459020","DOIUrl":null,"url":null,"abstract":"The emerging Space-Air-Ground Integrated Networks (SAGIN) empower Mobile Edge Computing (MEC) with wider communication coverage and more flexible network access. However, the fluctuating user traffic and constrained computing architecture seriously hinder the Quality-of-Service (QoS) and resource utilization in SAGIN. Existing solutions generally depend on prior knowledge or adopt static resource provisioning, lacking adaptability and resulting in serious system overheads. To address these important challenges, we propose THOAS, a novel Traffic-aware lightweight Hierarchical Offloading framework towards Adaptive Slicing-enabled SAGIN. First, we innovatively separate SAGIN into Communication Access Platforms (CAPs) and Computation Offloading Platforms (COPs). Next, we design a new self-attention-based prediction method to accurately capture the traffic changes on each platform, enabling adaptive slice resource adjustments. Finally, we develop an improved deep reinforcement learning method based on proximal clipping with dynamic confidence intervals to reach optimal offloading. Notably, we employ knowledge distillation to compress offloading policies into lightweight networks, enhancing their adaptability in resource-limited SAGIN. Using real-world datasets of user traffic, extensive experiments are conducted. The results show that the THOAS can accurately predict traffic and make adaptive resource adjustments and offloading decisions, which outperforms other benchmark methods on multiple metrics under various scenarios.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3536-3550"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704927/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging Space-Air-Ground Integrated Networks (SAGIN) empower Mobile Edge Computing (MEC) with wider communication coverage and more flexible network access. However, the fluctuating user traffic and constrained computing architecture seriously hinder the Quality-of-Service (QoS) and resource utilization in SAGIN. Existing solutions generally depend on prior knowledge or adopt static resource provisioning, lacking adaptability and resulting in serious system overheads. To address these important challenges, we propose THOAS, a novel Traffic-aware lightweight Hierarchical Offloading framework towards Adaptive Slicing-enabled SAGIN. First, we innovatively separate SAGIN into Communication Access Platforms (CAPs) and Computation Offloading Platforms (COPs). Next, we design a new self-attention-based prediction method to accurately capture the traffic changes on each platform, enabling adaptive slice resource adjustments. Finally, we develop an improved deep reinforcement learning method based on proximal clipping with dynamic confidence intervals to reach optimal offloading. Notably, we employ knowledge distillation to compress offloading policies into lightweight networks, enhancing their adaptability in resource-limited SAGIN. Using real-world datasets of user traffic, extensive experiments are conducted. The results show that the THOAS can accurately predict traffic and make adaptive resource adjustments and offloading decisions, which outperforms other benchmark methods on multiple metrics under various scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流量感知轻量级分层卸载,实现自适应切片 SAGIN
新兴的天空地综合网络(SAGIN)使移动边缘计算(MEC)具有更广泛的通信覆盖范围和更灵活的网络接入。然而,波动的用户流量和受约束的计算架构严重阻碍了SAGIN的服务质量(QoS)和资源利用率。现有的解决方案通常依赖于先验知识或采用静态资源配置,缺乏适应性,导致严重的系统开销。为了解决这些重要的挑战,我们提出了一种新的流量感知轻量级分层卸载框架,用于自适应切片SAGIN。首先,我们创新地将SAGIN分为通信接入平台(cap)和计算卸载平台(cop)。接下来,我们设计了一种新的基于自关注的预测方法,以准确捕捉每个平台上的流量变化,实现自适应的切片资源调整。最后,我们开发了一种改进的基于动态置信区间的近端裁剪的深度强化学习方法,以达到最优卸载。值得注意的是,我们使用知识蒸馏将卸载策略压缩到轻量级网络中,增强了它们在资源有限的SAGIN中的适应性。使用真实世界的用户流量数据集,进行了广泛的实验。结果表明,该方法能够准确预测流量,并做出自适应的资源调整和卸载决策,在各种场景下的多个指标上都优于其他基准测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Communications Society Information Corrections to “Coverage Rate Analysis for Integrated Sensing and Communication Networks” IEEE Journal on Selected Areas in Communications Publication Information Guest Editorial: Integrated Ground-Air-Space Wireless Networks for 6G Mobile—Part II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1