Zheyi Chen;Junjie Zhang;Geyong Min;Zhaolong Ning;Jie Li
{"title":"Traffic-Aware Lightweight Hierarchical Offloading Toward Adaptive Slicing-Enabled SAGIN","authors":"Zheyi Chen;Junjie Zhang;Geyong Min;Zhaolong Ning;Jie Li","doi":"10.1109/JSAC.2024.3459020","DOIUrl":null,"url":null,"abstract":"The emerging Space-Air-Ground Integrated Networks (SAGIN) empower Mobile Edge Computing (MEC) with wider communication coverage and more flexible network access. However, the fluctuating user traffic and constrained computing architecture seriously hinder the Quality-of-Service (QoS) and resource utilization in SAGIN. Existing solutions generally depend on prior knowledge or adopt static resource provisioning, lacking adaptability and resulting in serious system overheads. To address these important challenges, we propose THOAS, a novel Traffic-aware lightweight Hierarchical Offloading framework towards Adaptive Slicing-enabled SAGIN. First, we innovatively separate SAGIN into Communication Access Platforms (CAPs) and Computation Offloading Platforms (COPs). Next, we design a new self-attention-based prediction method to accurately capture the traffic changes on each platform, enabling adaptive slice resource adjustments. Finally, we develop an improved deep reinforcement learning method based on proximal clipping with dynamic confidence intervals to reach optimal offloading. Notably, we employ knowledge distillation to compress offloading policies into lightweight networks, enhancing their adaptability in resource-limited SAGIN. Using real-world datasets of user traffic, extensive experiments are conducted. The results show that the THOAS can accurately predict traffic and make adaptive resource adjustments and offloading decisions, which outperforms other benchmark methods on multiple metrics under various scenarios.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"42 12","pages":"3536-3550"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10704927/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The emerging Space-Air-Ground Integrated Networks (SAGIN) empower Mobile Edge Computing (MEC) with wider communication coverage and more flexible network access. However, the fluctuating user traffic and constrained computing architecture seriously hinder the Quality-of-Service (QoS) and resource utilization in SAGIN. Existing solutions generally depend on prior knowledge or adopt static resource provisioning, lacking adaptability and resulting in serious system overheads. To address these important challenges, we propose THOAS, a novel Traffic-aware lightweight Hierarchical Offloading framework towards Adaptive Slicing-enabled SAGIN. First, we innovatively separate SAGIN into Communication Access Platforms (CAPs) and Computation Offloading Platforms (COPs). Next, we design a new self-attention-based prediction method to accurately capture the traffic changes on each platform, enabling adaptive slice resource adjustments. Finally, we develop an improved deep reinforcement learning method based on proximal clipping with dynamic confidence intervals to reach optimal offloading. Notably, we employ knowledge distillation to compress offloading policies into lightweight networks, enhancing their adaptability in resource-limited SAGIN. Using real-world datasets of user traffic, extensive experiments are conducted. The results show that the THOAS can accurately predict traffic and make adaptive resource adjustments and offloading decisions, which outperforms other benchmark methods on multiple metrics under various scenarios.