Satellite-based estimation of monthly mean hourly 1-km urban air temperature using a diurnal temperature cycle model

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-10-04 DOI:10.1016/j.rse.2024.114453
Fan Huang , Wenfeng Zhan , Zihan Liu , Huilin Du , Pan Dong , Xinya Wang
{"title":"Satellite-based estimation of monthly mean hourly 1-km urban air temperature using a diurnal temperature cycle model","authors":"Fan Huang ,&nbsp;Wenfeng Zhan ,&nbsp;Zihan Liu ,&nbsp;Huilin Du ,&nbsp;Pan Dong ,&nbsp;Xinya Wang","doi":"10.1016/j.rse.2024.114453","DOIUrl":null,"url":null,"abstract":"<div><div>Cities worldwide face escalating climate change risks, underscoring the need for spatially and temporally resolved urban air temperature (T<sub>a</sub>) data. While satellite-derived land surface temperature (LST) data have been widely used to estimate T<sub>a</sub>, high-resolution hourly T<sub>a</sub> estimation in urban areas remains underexplored. Traditional methods typically rely on LST data from geostationary satellites and continuous 24-h T<sub>a</sub> observations from weather stations. To address these limitations, we introduce a method that combines a diurnal temperature cycle (DTC) model with a random forest model to estimate monthly mean hourly urban T<sub>a</sub> at 1-km resolution. This approach leverages a limited number of diurnal T<sub>a</sub> observations from weather stations, MODIS LST data, and ancillary information. The core idea of the proposed method is to transform the estimation of monthly mean hourly 1-km T<sub>a</sub> into estimating 1-km DTC model parameters, primarily daily maximum and minimum T<sub>a</sub> values. This method capitalizes on MODIS LST's ability to estimate daily T<sub>a</sub> extremes and requires only four diurnal T<sub>a</sub> observations within a daily cycle to estimate monthly mean hourly 1-km T<sub>a</sub>. Station-based five-fold cross-validation yields overall RMSE values consistently below 1.0 °C across nine cities with diverse geographic and climatic contexts. The accuracy achieved with only four diurnal T<sub>a</sub> observations rivals that obtained using continuous 24-h T<sub>a</sub> observations. Even with a limited training set of ten stations, the overall RMSE remains below 1.0 °C for most cities. The proposed method proves effective for both single-city and multi-city modeling and can estimate daily hourly 1-km T<sub>a</sub> under clear-sky conditions. In conclusion, this study offers a feasible, efficient, and versatile method for accurately estimating monthly mean hourly 1-km T<sub>a</sub>, which can be readily applied to other cities and holds potential for various applications.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114453"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004796","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Cities worldwide face escalating climate change risks, underscoring the need for spatially and temporally resolved urban air temperature (Ta) data. While satellite-derived land surface temperature (LST) data have been widely used to estimate Ta, high-resolution hourly Ta estimation in urban areas remains underexplored. Traditional methods typically rely on LST data from geostationary satellites and continuous 24-h Ta observations from weather stations. To address these limitations, we introduce a method that combines a diurnal temperature cycle (DTC) model with a random forest model to estimate monthly mean hourly urban Ta at 1-km resolution. This approach leverages a limited number of diurnal Ta observations from weather stations, MODIS LST data, and ancillary information. The core idea of the proposed method is to transform the estimation of monthly mean hourly 1-km Ta into estimating 1-km DTC model parameters, primarily daily maximum and minimum Ta values. This method capitalizes on MODIS LST's ability to estimate daily Ta extremes and requires only four diurnal Ta observations within a daily cycle to estimate monthly mean hourly 1-km Ta. Station-based five-fold cross-validation yields overall RMSE values consistently below 1.0 °C across nine cities with diverse geographic and climatic contexts. The accuracy achieved with only four diurnal Ta observations rivals that obtained using continuous 24-h Ta observations. Even with a limited training set of ten stations, the overall RMSE remains below 1.0 °C for most cities. The proposed method proves effective for both single-city and multi-city modeling and can estimate daily hourly 1-km Ta under clear-sky conditions. In conclusion, this study offers a feasible, efficient, and versatile method for accurately estimating monthly mean hourly 1-km Ta, which can be readily applied to other cities and holds potential for various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用昼夜温度周期模型对城市 1 公里每小时月平均气温进行卫星估算
全世界的城市都面临着不断升级的气候变化风险,这就更加需要具有空间和时间分辨率的城市气温(Ta)数据。虽然源自卫星的陆地表面温度(LST)数据已被广泛用于估算气温,但城市地区的高分辨率每小时气温估算仍未得到充分开发。传统方法通常依赖于地球静止卫星的 LST 数据和气象站连续 24 小时的 Ta 观测数据。为了解决这些局限性,我们引入了一种将昼夜温度周期(DTC)模型与随机森林模型相结合的方法,以 1 千米的分辨率估算城市每小时的月平均 Ta 值。这种方法利用了气象站有限数量的昼夜气温观测数据、MODIS LST 数据和辅助信息。该方法的核心思想是将估算月平均每小时 1 公里 Ta 值转化为估算 1 公里 DTC 模型参数,主要是每日最大和最小 Ta 值。该方法利用了 MODIS LST 估算日极端 Ta 值的能力,只需在一个日周期内进行四次昼夜 Ta 观测,即可估算月平均每小时 1 公里 Ta 值。在地理和气候环境各异的九个城市中,基于站点的五倍交叉验证得出的总体 RMSE 值始终低于 1.0 °C。仅使用四个昼夜Ta观测数据所获得的准确度,可与使用连续24小时Ta观测数据所获得的准确度相媲美。即使使用有限的 10 个站点的训练集,大多数城市的总体 RMSE 仍低于 1.0 ℃。事实证明,所提出的方法对单个城市和多个城市的建模都很有效,并能在晴空条件下估算每日每小时 1 公里的 Ta 值。总之,本研究为精确估算月平均每小时 1 千米 Ta 值提供了一种可行、高效和通用的方法,该方法可随时应用于其他城市,并具有多种应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Two-decade surface ozone (O3) pollution in China: Enhanced fine-scale estimations and environmental health implications Assessing lead fraction derived from passive microwave images and improving estimates at pixel-wise level Estimating anthropogenic CO2 emissions from China's Yangtze River Delta using OCO-2 observations and WRF-Chem simulations A dual-branch network for crop-type mapping of scattered small agricultural fields in time series remote sensing images From theory to hydrological practice: Leveraging CYGNSS data over seven years for advanced soil moisture monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1