Understanding the Intrinsic Reactivity of Black Phosphorus

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of materials research Pub Date : 2024-10-04 DOI:10.1021/accountsmr.4c00144
Haijiang Tian, Haoyu Wang, Jiahong Wang, Guangbo Qu, Xue-Feng Yu, Guibin Jiang
{"title":"Understanding the Intrinsic Reactivity of Black Phosphorus","authors":"Haijiang Tian, Haoyu Wang, Jiahong Wang, Guangbo Qu, Xue-Feng Yu, Guibin Jiang","doi":"10.1021/accountsmr.4c00144","DOIUrl":null,"url":null,"abstract":"Black phosphorus (BP), a rediscovered two-dimensional (2D) material, has garnered significant interest due to its unique structure and physicochemical characteristics, including adjustable direct bandgaps, high carrier mobility, large specific surface area, and pronounced chemical reactivity. Distinct from the flat atomic structure of graphene, BP features a puckered honeycomb-like structure derived from sp<sup>3</sup> hybridization. In addition to the three-coordination, each phosphorus atom possesses a lone pair of electrons, leading to an electron-rich nature. A variety of nanostructures such as nanosheets, nanoribbons, and quantum dots are developed from the bulk crystal of BP. The large surface area of nano BP provides numerous reactive sites that augment intralayer chemical interactions. Therefore, nano BP serves as a versatile scaffold for materials engineering, with potential applications across chemistry, catalysis, energy, and biomedicine. It is crucial to have a deep and systematic understanding of the hybridization interactions between BP and diverse molecules or materials, which is essential for functional design of BP-based materials for target applications.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":null,"pages":null},"PeriodicalIF":14.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Black phosphorus (BP), a rediscovered two-dimensional (2D) material, has garnered significant interest due to its unique structure and physicochemical characteristics, including adjustable direct bandgaps, high carrier mobility, large specific surface area, and pronounced chemical reactivity. Distinct from the flat atomic structure of graphene, BP features a puckered honeycomb-like structure derived from sp3 hybridization. In addition to the three-coordination, each phosphorus atom possesses a lone pair of electrons, leading to an electron-rich nature. A variety of nanostructures such as nanosheets, nanoribbons, and quantum dots are developed from the bulk crystal of BP. The large surface area of nano BP provides numerous reactive sites that augment intralayer chemical interactions. Therefore, nano BP serves as a versatile scaffold for materials engineering, with potential applications across chemistry, catalysis, energy, and biomedicine. It is crucial to have a deep and systematic understanding of the hybridization interactions between BP and diverse molecules or materials, which is essential for functional design of BP-based materials for target applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解黑磷的内在反应性
黑磷(BP)是一种被重新发现的二维(2D)材料,由于其独特的结构和物理化学特性,包括可调节的直接带隙、高载流子迁移率、大比表面积和明显的化学反应活性,它引起了人们的极大兴趣。与石墨烯的平面原子结构不同,BP 具有由 sp3 杂化产生的皱褶蜂窝状结构。除了三配位外,每个磷原子还拥有一对孤对电子,因此具有富电子性。从 BP 的块状晶体中开发出了各种纳米结构,如纳米片、纳米带和量子点。纳米 BP 的大表面积提供了大量的反应位点,增强了层内的化学相互作用。因此,纳米 BP 可作为材料工程的多功能支架,在化学、催化、能源和生物医学等领域具有潜在的应用前景。深入、系统地了解 BP 与不同分子或材料之间的杂化相互作用至关重要,这对于为目标应用设计基于 BP 的功能材料至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding the Intrinsic Reactivity of Black Phosphorus Ammonia Storage in Metal–Organic Framework Materials: Recent Developments in Design and Characterization Rational Fabrication of Functionally-Graded Surfaces for Biological and Biomedical Applications Thermally Drawn Semiconductor Fibers: Fabrication Strategies and Applications Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1