Recent advances in the expanding genetic code

IF 6.9 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Opinion in Chemical Biology Pub Date : 2024-10-03 DOI:10.1016/j.cbpa.2024.102537
Michael L. Pigula, Peter G. Schultz
{"title":"Recent advances in the expanding genetic code","authors":"Michael L. Pigula,&nbsp;Peter G. Schultz","doi":"10.1016/j.cbpa.2024.102537","DOIUrl":null,"url":null,"abstract":"<div><div>For over a billion years, the central dogma of biology has been limited largely to 20 canonical amino acids with relatively simple functionalities. The ability to rationally add new building blocks to the genetic code has enabled the site-specific incorporation of hundreds of noncanonical amino acids (ncAAs) with novel properties into proteins in living organisms. Recent technological advances have enabled high level mammalian expression of proteins containing ncAAs, the use of unique codons to direct ncAA incorporation, extension of this methodology to a range of eukaryotic organisms, and the ability to encode building blocks beyond α-amino acids. These ncAAs have been used to study and control proteins in their native cellular context and to engineer enzymes and biotherapeutics with improved or novel properties. Herein we discuss recent developments in the field and potential future research directions.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102537"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124001133","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

For over a billion years, the central dogma of biology has been limited largely to 20 canonical amino acids with relatively simple functionalities. The ability to rationally add new building blocks to the genetic code has enabled the site-specific incorporation of hundreds of noncanonical amino acids (ncAAs) with novel properties into proteins in living organisms. Recent technological advances have enabled high level mammalian expression of proteins containing ncAAs, the use of unique codons to direct ncAA incorporation, extension of this methodology to a range of eukaryotic organisms, and the ability to encode building blocks beyond α-amino acids. These ncAAs have been used to study and control proteins in their native cellular context and to engineer enzymes and biotherapeutics with improved or novel properties. Herein we discuss recent developments in the field and potential future research directions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
扩展遗传密码的最新进展。
十多亿年来,生物学的核心教条一直局限于 20 个功能相对简单的典型氨基酸。在遗传密码中合理添加新构建模块的能力,使数百种具有新特性的非规范氨基酸(ncAAs)能够特异性地加入生物体的蛋白质中。最近的技术进步实现了含有 ncAAs 的蛋白质在哺乳动物体内的高水平表达,使用独特的密码子指导 ncAAs 的结合,将这种方法推广到一系列真核生物体,并能够编码 α 氨基酸以外的构建模块。这些 ncAAs 已被用于研究和控制原生细胞环境中的蛋白质,以及设计具有改进或新特性的酶和生物治疗药物。在此,我们将讨论该领域的最新进展以及未来潜在的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Chemical Biology
Current Opinion in Chemical Biology 生物-生化与分子生物学
CiteScore
13.30
自引率
1.30%
发文量
113
审稿时长
74 days
期刊介绍: COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.
期刊最新文献
Bacterial peptidoglycan as a living polymer. Illuminating anions in biology with genetically encoded fluorescent biosensors. Advances in acid-degradable and enzyme-cleavable linkers for drug delivery. Development of novel indicators and molecular systems for calcium sensing through protein engineering. Forty sites of TRP channel regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1