Li–Sb Alloy Formation Strategy to Improve Interfacial Stability of All-Solid-State Lithium Batteries

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-04 DOI:10.1002/smtd.202400571
Berhanu Degagsa Dandena, Wei-Nien Su, Dah-Shyang Tsai, Yosef Nikodimos, Bereket Woldegbreal Taklu, Hailemariam Kassa Bezabh, Gidey Bahre Desta, Sheng-Chiang Yang, Keseven Lakshmanan, Hwo-Shuenn Sheu, Chia-Hsin Wang, She-Huang Wu, Bing Joe Hwang
{"title":"Li–Sb Alloy Formation Strategy to Improve Interfacial Stability of All-Solid-State Lithium Batteries","authors":"Berhanu Degagsa Dandena,&nbsp;Wei-Nien Su,&nbsp;Dah-Shyang Tsai,&nbsp;Yosef Nikodimos,&nbsp;Bereket Woldegbreal Taklu,&nbsp;Hailemariam Kassa Bezabh,&nbsp;Gidey Bahre Desta,&nbsp;Sheng-Chiang Yang,&nbsp;Keseven Lakshmanan,&nbsp;Hwo-Shuenn Sheu,&nbsp;Chia-Hsin Wang,&nbsp;She-Huang Wu,&nbsp;Bing Joe Hwang","doi":"10.1002/smtd.202400571","DOIUrl":null,"url":null,"abstract":"<p>The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte Li<sub>6</sub>PS<sub>5</sub>Cl (LPSC-P) to form Li–Sb alloy. The Li–Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long-term stability, and achieving the highest critical current density of 14.5 mA cm<sup>−2</sup> (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li–Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li–Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy-forming electrolytes for advanced solid-state batteries.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":"9 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smtd.202400571","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The solid electrolyte is anticipated to prevent lithium dendrite formation. However, preventing interface reactions and the development of undesirable lithium metal deposition during cycling are difficult and remain unresolved. Here, to comprehend these occurrences better, this study reports an alloy formation strategy for enhanced interface stability by incorporating antimony (Sb) in the lithium argyrodite solid electrolyte Li6PS5Cl (LPSC-P) to form Li–Sb alloy. The Li–Sb alloy emergence at the anodic interface is crucial in facilitating uniform lithium deposition, resulting in excellent long-term stability, and achieving the highest critical current density of 14.5 mA cm−2 (among the reported sulfide solid electrolytes) without lithium dendrite penetration. Furthermore, Li–Sb alloy formation maintain interfacial contact, even, after several plating and stripping. The Li–Sb alloy formation is confirmed by XRD, Raman, and XPS. The work demonstrates the prospect of utilizing alloy-forming electrolytes for advanced solid-state batteries.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改善全固态锂电池界面稳定性的锂锑合金形成策略。
固体电解质可防止锂枝晶的形成。然而,在循环过程中防止界面反应和不良锂金属沉积的发生却很困难,而且仍未得到解决。为了更好地理解这些现象,本研究报告了一种合金形成策略,通过在锂霰石固体电解质 Li6PS5Cl(LPSC-P)中加入锑(Sb)来形成锂锑合金,从而增强界面稳定性。阳极界面上出现的锂锑合金对促进锂的均匀沉积至关重要,从而实现了出色的长期稳定性,并达到了 14.5 mA cm-2 的最高临界电流密度(在已报道的硫化物固体电解质中),且没有锂枝晶渗透。此外,锂锑合金的形成甚至在多次电镀和剥离后仍能保持界面接触。锂锑合金的形成通过 XRD、拉曼和 XPS 得到了证实。这项研究成果展示了利用合金形成电解质制造先进固态电池的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Beyond the Hype: Decoding Bis(fluorosulfonyl)imide Chemistry in Advanced Lithium-Sulfur Batteries. Improving Cycle Life and Capacity Retention in PVMPO‖Li Dual-Ion Lithium-Organic Batteries Using an EC-Free and FEC Additive Containing Electrolyte. Naphthalene-Based Passivators for Efficient Perovskite Solar Cells: Synergistic Defect Passivation and Charge Extraction via Combined Theoretical and Experimental Study. Correction to: "Environment-Adaptable Rotational Energy Harvesters Based on Nylon-Core Coiled Carbon Nanotube Yarns". Cardenolide-Engineered Extracellular Vesicles Augment Drug Uptake and Cytotoxicity in Non-small Cell Lung Cancer Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1