Pharmacy 3D printing.

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Biofabrication Pub Date : 2024-10-24 DOI:10.1088/1758-5090/ad837a
Jessica T Y Cheng, Edwin C K Tan, Lifeng Kang
{"title":"Pharmacy 3D printing.","authors":"Jessica T Y Cheng, Edwin C K Tan, Lifeng Kang","doi":"10.1088/1758-5090/ad837a","DOIUrl":null,"url":null,"abstract":"<p><p>A significant limitation of the 'one size fits all' medication approach is the lack of consideration for special population groups. 3D printing technology has revolutionised the landscape of pharmaceuticals and pharmacy practice, playing an integral role in enabling on-demand production of customised medication. Compared to traditional pharmaceutical processes, 3D printing has major advantages in producing tailored dosage forms with unique drug release mechanisms. Moreover, this technology has enabled the combination of multiple drugs in a single formulation addressing key issues of medication burden. Development of 3D printing in pharmacy applications and large-scale pharmaceutical manufacturing has substantially increased in recent years. This review focuses on the emergence of extrusion-based 3D printing, particularly semi solid extrusion, fused deposition modelling and direct powder extrusion, which are currently the most commonly studied for pharmacy practice. The concept of each technique is summarised, with examples of current and potential applications. Next, recent advancements in the 3D printer market and pharmacist perceptions are discussed. Finally, the benefits, challenges and prospects of pharmacy 3D printing technology are highlighted, emphasising its significance in changing the future of this field.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad837a","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A significant limitation of the 'one size fits all' medication approach is the lack of consideration for special population groups. 3D printing technology has revolutionised the landscape of pharmaceuticals and pharmacy practice, playing an integral role in enabling on-demand production of customised medication. Compared to traditional pharmaceutical processes, 3D printing has major advantages in producing tailored dosage forms with unique drug release mechanisms. Moreover, this technology has enabled the combination of multiple drugs in a single formulation addressing key issues of medication burden. Development of 3D printing in pharmacy applications and large-scale pharmaceutical manufacturing has substantially increased in recent years. This review focuses on the emergence of extrusion-based 3D printing, particularly semi solid extrusion, fused deposition modelling and direct powder extrusion, which are currently the most commonly studied for pharmacy practice. The concept of each technique is summarised, with examples of current and potential applications. Next, recent advancements in the 3D printer market and pharmacist perceptions are discussed. Finally, the benefits, challenges and prospects of pharmacy 3D printing technology are highlighted, emphasising its significance in changing the future of this field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药房 3D 打印。
"一刀切 "的用药方法的一大局限是缺乏对特殊人群的考虑。3D 打印技术彻底改变了制药和药学实践的面貌,在按需生产定制药物方面发挥了不可或缺的作用。与传统制药工艺相比,3D 打印技术在生产具有独特药物释放机制的定制剂型方面具有重大优势。此外,该技术还能在单一配方中结合多种药物,解决用药负担的关键问题。近年来,3D 打印技术在临床应用和大规模制药方面的发展大幅增加。本综述重点介绍基于挤压的 3D 打印技术,特别是半固态挤压、熔融沉积建模和直接粉末挤压,这些技术目前在制药实践中最常被研究。本文概述了每种技术的概念,并举例说明了当前和潜在的应用。接下来,讨论了 3D 打印机市场的最新进展和药剂师的看法。最后,重点介绍了药学 3D 打印技术的优势、挑战和前景,强调了该技术在改变该领域未来方面的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
期刊最新文献
Shape/properties collaborative intelligent manufacturing of artificial bone scaffold: structural design and additive manufacturing process. A digital manufactured microfluidic platform for flexible construction of 3D co-culture tumor model with spatiotemporal resolution. Soft-lithographically defined template for arbitrarily patterned acoustic bioassembly. CMC/Gel/GO 3D-printed cardiac patches: GO and CMC improve flexibility and promote H9C2 cell proliferation, while EDC/NHS enhances stability. Hybrid 3D bioprinting for advanced tissue-engineered trachea: merging fused deposition modeling (FDM) and top-down digital light processing (DLP).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1