Matthew J Studinski, Christine Bowlus, James A Pawelczyk, Jocelyn M Delgado Spicuzza, Jigar Gosalia, Swapan Mookerjee, Matthew D Muller, Jason Fragin, David N Proctor
{"title":"Vascular limitations in blood pressure regulation with age in women: Insights from exercise and acute cardioselective β-blockade.","authors":"Matthew J Studinski, Christine Bowlus, James A Pawelczyk, Jocelyn M Delgado Spicuzza, Jigar Gosalia, Swapan Mookerjee, Matthew D Muller, Jason Fragin, David N Proctor","doi":"10.1113/EP091843","DOIUrl":null,"url":null,"abstract":"<p><p>Younger women rely on altering cardiac output ( <math> <semantics><mover><mi>Q</mi> <mo>̇</mo></mover> <annotation>$\\dot{Q}$</annotation></semantics> </math> ) to regulate blood pressure (BP). In contrast, older women rely more on altering vascular tone. However, evidence suggests that the ability to alter systemic vascular conductance (SVC) is diminished in older women. In the present study, cardioselective β-blockade was utilized to diminish the relative contribution of <math> <semantics><mover><mi>Q</mi> <mo>̇</mo></mover> <annotation>$\\dot{Q}$</annotation></semantics> </math> to BP regulation and thereby evaluate age-related vascular limitations in women at rest and during large muscle dynamic exercise. Younger (n = 13, mean age 26.0 years) and older (n = 14, mean age 61.8 years) healthy women performed submaximal bouts of semi-recumbent cycling exercise at varying intensities while receiving an intravenous infusion of esmolol, a β<sub>1</sub>-antagonist, or saline control in a repeated-measures crossover design. <math> <semantics><mover><mi>Q</mi> <mo>̇</mo></mover> <annotation>$\\dot{Q}$</annotation></semantics> </math> was attenuated during esmolol infusion, with greater reductions during exercise (moderate, -1.0 (95% CI, -1.6 to -0.5) L/min, P < 0.001; heavy, -2.0 (95% CI, -2.6 to -1.5) L/min, P < 0.001) than seated rest (-0.5 (95% CI, -1.1 to 0.0) L/min, P = 0.048), and this reduction was not significantly different between age groups (P = 0.122). Older women exhibited a greater attenuation in mean arterial pressure (MAP) during esmolol (-7 (95% CI, -9 to -4) mmHg, P < 0.001) relative to younger women (-2 (95% CI, -5 to 0) mmHg, P = 0.071). These changes coincided with a greater reduction of SVC in the younger women during esmolol (-15 (95% CI, -20 to -10) mL/min/mmHg, P < 0.001) compared to older women (-3 (95% CI, -9 to 2) mL/min/mmHg, P = 0.242). Together, these findings provide evidence that older, postmenopausal women have a diminished ability to adjust SVC in order to regulate MAP.</p>","PeriodicalId":12092,"journal":{"name":"Experimental Physiology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/EP091843","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Younger women rely on altering cardiac output ( ) to regulate blood pressure (BP). In contrast, older women rely more on altering vascular tone. However, evidence suggests that the ability to alter systemic vascular conductance (SVC) is diminished in older women. In the present study, cardioselective β-blockade was utilized to diminish the relative contribution of to BP regulation and thereby evaluate age-related vascular limitations in women at rest and during large muscle dynamic exercise. Younger (n = 13, mean age 26.0 years) and older (n = 14, mean age 61.8 years) healthy women performed submaximal bouts of semi-recumbent cycling exercise at varying intensities while receiving an intravenous infusion of esmolol, a β1-antagonist, or saline control in a repeated-measures crossover design. was attenuated during esmolol infusion, with greater reductions during exercise (moderate, -1.0 (95% CI, -1.6 to -0.5) L/min, P < 0.001; heavy, -2.0 (95% CI, -2.6 to -1.5) L/min, P < 0.001) than seated rest (-0.5 (95% CI, -1.1 to 0.0) L/min, P = 0.048), and this reduction was not significantly different between age groups (P = 0.122). Older women exhibited a greater attenuation in mean arterial pressure (MAP) during esmolol (-7 (95% CI, -9 to -4) mmHg, P < 0.001) relative to younger women (-2 (95% CI, -5 to 0) mmHg, P = 0.071). These changes coincided with a greater reduction of SVC in the younger women during esmolol (-15 (95% CI, -20 to -10) mL/min/mmHg, P < 0.001) compared to older women (-3 (95% CI, -9 to 2) mL/min/mmHg, P = 0.242). Together, these findings provide evidence that older, postmenopausal women have a diminished ability to adjust SVC in order to regulate MAP.
期刊介绍:
Experimental Physiology publishes research papers that report novel insights into homeostatic and adaptive responses in health, as well as those that further our understanding of pathophysiological mechanisms in disease. We encourage papers that embrace the journal’s orientation of translation and integration, including studies of the adaptive responses to exercise, acute and chronic environmental stressors, growth and aging, and diseases where integrative homeostatic mechanisms play a key role in the response to and evolution of the disease process. Examples of such diseases include hypertension, heart failure, hypoxic lung disease, endocrine and neurological disorders. We are also keen to publish research that has a translational aspect or clinical application. Comparative physiology work that can be applied to aid the understanding human physiology is also encouraged.
Manuscripts that report the use of bioinformatic, genomic, molecular, proteomic and cellular techniques to provide novel insights into integrative physiological and pathophysiological mechanisms are welcomed.