Genomic epidemiology of carbapenem-resistant Enterobacterales at a New York City hospital over a 10-year period reveals complex plasmid-clone dynamics and evidence for frequent horizontal transfer of bla KPC.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Genome research Pub Date : 2024-11-05 DOI:10.1101/gr.279355.124
Angela Gomez-Simmonds, Medini K Annavajhala, Dwayne Seeram, Todd W Hokunson, Heekuk Park, Anne-Catrin Uhlemann
{"title":"Genomic epidemiology of carbapenem-resistant Enterobacterales at a New York City hospital over a 10-year period reveals complex plasmid-clone dynamics and evidence for frequent horizontal transfer of <i>bla</i> <sub>KPC</sub>.","authors":"Angela Gomez-Simmonds, Medini K Annavajhala, Dwayne Seeram, Todd W Hokunson, Heekuk Park, Anne-Catrin Uhlemann","doi":"10.1101/gr.279355.124","DOIUrl":null,"url":null,"abstract":"<p><p>Transmission of carbapenem-resistant Enterobacterales (CRE) in hospitals has been shown to occur through complex, multifarious networks driven by both clonal spread and horizontal transfer mediated by plasmids and other mobile genetic elements. We performed nanopore long-read sequencing on CRE isolates from a large urban hospital system to determine the overall contribution of plasmids to CRE transmission and identify specific plasmids implicated in the spread of <i>bla</i> <sub>KPC</sub> (the <i>Klebsiella pneumoniae</i> carbapenemase [KPC] gene). Six hundred and five CRE isolates collected between 2009 and 2018 first underwent Illumina sequencing for genome-wide genotyping; 435 <i>bla</i> <sub>KPC</sub>-positive isolates were then successfully nanopore sequenced to generate hybrid assemblies including circularized <i>bla</i> <sub>KPC</sub>-harboring plasmids. Phylogenetic analysis and Mash clustering were used to define putative clonal and plasmid transmission clusters, respectively. Overall, CRE isolates belonged to 96 multilocus sequence types (STs) encoding <i>bla</i> <sub>KPC</sub> on 447 plasmids which formed 54 plasmid clusters. We found evidence for clonal transmission in 66% of CRE isolates, over half of which belonged to four clades comprising <i>K. pneumoniae</i> ST258. Plasmid-mediated acquisition of <i>bla</i> <sub>KPC</sub> occurred in 23%-27% of isolates. While most plasmid clusters were small, several plasmids were identified in multiple different species and STs, including a highly promiscuous IncN plasmid and an IncF plasmid putatively spreading <i>bla</i> <sub>KPC</sub> from ST258 to other clones. Overall, this points to both the continued dominance of <i>K. pneumoniae</i> ST258 and the dissemination of <i>bla</i> <sub>KPC</sub> across clones and species by diverse plasmid backbones. These findings support integrating long-read sequencing into genomic surveillance approaches to detect the hitherto silent spread of carbapenem resistance driven by mobile plasmids.</p>","PeriodicalId":12678,"journal":{"name":"Genome research","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279355.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Transmission of carbapenem-resistant Enterobacterales (CRE) in hospitals has been shown to occur through complex, multifarious networks driven by both clonal spread and horizontal transfer mediated by plasmids and other mobile genetic elements. We performed nanopore long-read sequencing on CRE isolates from a large urban hospital system to determine the overall contribution of plasmids to CRE transmission and identify specific plasmids implicated in the spread of bla KPC (the Klebsiella pneumoniae carbapenemase [KPC] gene). Six hundred and five CRE isolates collected between 2009 and 2018 first underwent Illumina sequencing for genome-wide genotyping; 435 bla KPC-positive isolates were then successfully nanopore sequenced to generate hybrid assemblies including circularized bla KPC-harboring plasmids. Phylogenetic analysis and Mash clustering were used to define putative clonal and plasmid transmission clusters, respectively. Overall, CRE isolates belonged to 96 multilocus sequence types (STs) encoding bla KPC on 447 plasmids which formed 54 plasmid clusters. We found evidence for clonal transmission in 66% of CRE isolates, over half of which belonged to four clades comprising K. pneumoniae ST258. Plasmid-mediated acquisition of bla KPC occurred in 23%-27% of isolates. While most plasmid clusters were small, several plasmids were identified in multiple different species and STs, including a highly promiscuous IncN plasmid and an IncF plasmid putatively spreading bla KPC from ST258 to other clones. Overall, this points to both the continued dominance of K. pneumoniae ST258 and the dissemination of bla KPC across clones and species by diverse plasmid backbones. These findings support integrating long-read sequencing into genomic surveillance approaches to detect the hitherto silent spread of carbapenem resistance driven by mobile plasmids.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纽约市一家医院十年间耐碳青霉烯类肠杆菌的基因组流行病学揭示了复杂的质粒克隆动态和 bla KPC 频繁水平转移的证据。
耐碳青霉烯类肠杆菌(CRE)在医院中的传播已被证明是通过由质粒和其他移动遗传因子介导的克隆传播和水平转移所驱动的复杂而多样的网络进行的。我们对来自一个大型城市医院系统的 CRE 分离物进行了纳米孔长读数测序,以确定质粒对 CRE 传播的总体贡献,并识别与 bla KPC(肺炎克雷伯菌碳青霉烯酶 [KPC] 基因)传播有关的特定质粒。2009-2018 年间收集的 605 株 CRE 分离物首先进行了 Illumina 测序,以进行全基因组基因分型;然后对 435 株 bla KPC 阳性分离物进行了成功的纳米孔测序,以生成包括环化 bla KPC 携带质粒的杂交组合。系统发育分析和 Mash 聚类分别用于确定假定的克隆和质粒传播群。总体而言,CRE 分离物属于 96 个多焦点序列类型(ST),在 447 个质粒上编码 bla KPC,形成 54 个质粒群。我们在 66% 的 CRE 分离物中发现了克隆传播的证据,其中一半以上属于由肺炎克菌 ST258 组成的四个支系。23-27%的分离株通过质粒获得了 bla KPC。虽然大多数质粒群规模较小,但在多个不同物种和 ST 中发现了几种质粒,包括一种高度杂合的 IncN 质粒和一种可能将 bla KPC 从 ST258 传播到其他克隆的 IncF 质粒。总之,这表明肺炎克菌 ST258 仍处于优势地位,而 bla KPC 则通过不同的质粒骨架在克隆和物种间传播。这些发现支持将长读测序纳入基因组监测方法,以检测迄今为止由移动质粒驱动的碳青霉烯耐药性的无声传播。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Genome research
Genome research 生物-生化与分子生物学
CiteScore
12.40
自引率
1.40%
发文量
140
审稿时长
6 months
期刊介绍: Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine. Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies. New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.
期刊最新文献
Modeling gene interactions in polygenic prediction via geometric deep learning High-quality sika deer omics data and integrative analysis reveal genic and cellular regulation of antler regeneration ISWI1 complex proteins facilitate developmental genome editing in Paramecium Haplotype-resolved genome and population genomics of the threatened garden dormouse in Europe. Multisample motif discovery and visualization for tandem repeats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1