Lipid metabolism: Novel approaches for managing idiopathic epilepsy

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM Neuropeptides Pub Date : 2024-09-29 DOI:10.1016/j.npep.2024.102475
Chao Wang, Jinxia Zhai, Xuemei Zhou, Yongjun Chen
{"title":"Lipid metabolism: Novel approaches for managing idiopathic epilepsy","authors":"Chao Wang,&nbsp;Jinxia Zhai,&nbsp;Xuemei Zhou,&nbsp;Yongjun Chen","doi":"10.1016/j.npep.2024.102475","DOIUrl":null,"url":null,"abstract":"<div><div>Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.</div></div>","PeriodicalId":19254,"journal":{"name":"Neuropeptides","volume":"108 ","pages":"Article 102475"},"PeriodicalIF":2.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropeptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014341792400074X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Epilepsy is a common neurological condition characterized by abnormal neuronal activity, often leading to cellular damage and death. There is evidence to suggest that lipid imbalances resulting in cellular death play a key role in the development of epilepsy, including changes in triglycerides, cholesterol, sphingolipids, phospholipids, lipid droplets, and bile acids (BAs). Disrupted lipid metabolism acts as a crucial pathological mechanism in epilepsy, potentially linked to processes such as cellular ferroptosis, lipophagy, and immune modulation of gut microbiota (thus influencing the gut-brain axis). Understanding these mechanisms could open up new avenues for epilepsy treatment. This study investigates the association between disturbances in lipid metabolism and the onset of epilepsy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脂质代谢:治疗特发性癫痫的新方法。
癫痫是一种常见的神经系统疾病,其特点是神经元活动异常,常常导致细胞损伤和死亡。有证据表明,导致细胞死亡的脂质失衡在癫痫发病中起着关键作用,包括甘油三酯、胆固醇、鞘脂、磷脂、脂滴和胆汁酸(BAs)的变化。脂质代谢紊乱是癫痫的一个重要病理机制,可能与细胞铁凋亡、脂质吞噬和肠道微生物群的免疫调节(从而影响肠道-大脑轴)等过程有关。了解这些机制可为癫痫治疗开辟新途径。本研究探讨了脂质代谢紊乱与癫痫发病之间的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropeptides
Neuropeptides 医学-内分泌学与代谢
CiteScore
5.40
自引率
6.90%
发文量
55
审稿时长
>12 weeks
期刊介绍: The aim of Neuropeptides is the rapid publication of original research and review articles, dealing with the structure, distribution, actions and functions of peptides in the central and peripheral nervous systems. The explosion of research activity in this field has led to the identification of numerous naturally occurring endogenous peptides which act as neurotransmitters, neuromodulators, or trophic factors, to mediate nervous system functions. Increasing numbers of non-peptide ligands of neuropeptide receptors have been developed, which act as agonists or antagonists in peptidergic systems. The journal provides a unique opportunity of integrating the many disciplines involved in all neuropeptide research. The journal publishes articles on all aspects of the neuropeptide field, with particular emphasis on gene regulation of peptide expression, peptide receptor subtypes, transgenic and knockout mice with mutations in genes for neuropeptides and peptide receptors, neuroanatomy, physiology, behaviour, neurotrophic factors, preclinical drug evaluation, clinical studies, and clinical trials.
期刊最新文献
The impact of endogenous N/OFQ on DPN: Insights into lower limb blood flow regulation in rats. FMRFamide G protein-coupled receptors (GPCR) in the cuttlefish Sepiella japonica: Identification, characterization and expression profile. Editorial Board Protective effect of Apelin-13 on D-glutamic acid-induced excitotoxicity in SH-SY5Y cell line: An in-vitro study Neuroanatomical mapping of spexin and nesfatin-1-expressing neurons in the human brainstem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1