Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons.

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Reports Pub Date : 2024-11-12 Epub Date: 2024-10-03 DOI:10.1016/j.stemcr.2024.09.001
Nina Doorn, Eva J H F Voogd, Marloes R Levers, Michel J A M van Putten, Monica Frega
{"title":"Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons.","authors":"Nina Doorn, Eva J H F Voogd, Marloes R Levers, Michel J A M van Putten, Monica Frega","doi":"10.1016/j.stemcr.2024.09.001","DOIUrl":null,"url":null,"abstract":"<p><p>Fragmented network bursts (NBs) are observed as a phenotypic driver in many patient-derived neuronal networks on multi-electrode arrays (MEAs), but the pathophysiological mechanisms underlying this phenomenon are unknown. Here, we used our previously developed biophysically detailed in silico model to investigate these mechanisms. Fragmentation of NBs in our model simulations occurred only when the level of short-term synaptic depression (STD) was enhanced, suggesting that STD is a key player. Experimental validation with Dynasore, an STD enhancer, induced fragmented NBs in healthy neuronal networks in vitro. Additionally, we showed that strong asynchronous neurotransmitter release, NMDA currents, or short-term facilitation (STF) can support the emergence of multiple fragments in NBs by producing excitation that persists after high-frequency firing stops. Our results provide important insights into disease mechanisms and potential pharmaceutical targets for neurological disorders modeled using human induced pluripotent stem cell (hiPSC)-derived neurons.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2024.09.001","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Fragmented network bursts (NBs) are observed as a phenotypic driver in many patient-derived neuronal networks on multi-electrode arrays (MEAs), but the pathophysiological mechanisms underlying this phenomenon are unknown. Here, we used our previously developed biophysically detailed in silico model to investigate these mechanisms. Fragmentation of NBs in our model simulations occurred only when the level of short-term synaptic depression (STD) was enhanced, suggesting that STD is a key player. Experimental validation with Dynasore, an STD enhancer, induced fragmented NBs in healthy neuronal networks in vitro. Additionally, we showed that strong asynchronous neurotransmitter release, NMDA currents, or short-term facilitation (STF) can support the emergence of multiple fragments in NBs by producing excitation that persists after high-frequency firing stops. Our results provide important insights into disease mechanisms and potential pharmaceutical targets for neurological disorders modeled using human induced pluripotent stem cell (hiPSC)-derived neurons.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
打破爆发:揭示患者神经元碎片化网络爆发背后的机制
在多电极阵列(MEA)上观察到,在许多源自患者的神经元网络中,网络爆发碎片(NBs)是一种表型驱动因素,但这种现象背后的病理生理学机制尚不清楚。在此,我们利用之前开发的生物物理详细硅学模型来研究这些机制。在我们的模型模拟中,只有当短期突触抑制(STD)水平增强时才会发生 NB 分裂,这表明 STD 是一个关键因素。在体外健康神经元网络中,使用 STD 增强剂 Dynasore 进行的实验验证诱发了 NB 分裂。此外,我们还发现,强烈的异步神经递质释放、NMDA 电流或短期促进(STF)可以在高频发射停止后产生持续的兴奋,从而支持 NB 中多个片段的出现。我们的研究结果为利用人类诱导多能干细胞(hiPSC)衍生神经元模拟神经系统疾病的发病机制和潜在药物靶点提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
期刊最新文献
Breaking the burst: Unveiling mechanisms behind fragmented network bursts in patient-derived neurons. Transplantation of human pluripotent stem cell-derived retinal sheet in a primate model of macular hole. Accelerated mitochondrial dynamics promote spermatogonial differentiation. Validation of non-destructive morphology-based selection of cerebral cortical organoids by paired morphological and single-cell RNA-seq analyses. Targeting glioblastoma with a brain-penetrant drug that impairs brain tumor stem cells via NLE1-Notch1 complex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1