Maxim P Carlier, Peter H Cenijn, Timur Baygildiev, Jenny Irwan, Sylvia E Escher, Majorie B M van Duursen, Timo Hamers
{"title":"Profiling the endocrine disrupting properties of triazines, triazoles and short-chain PFAS.","authors":"Maxim P Carlier, Peter H Cenijn, Timur Baygildiev, Jenny Irwan, Sylvia E Escher, Majorie B M van Duursen, Timo Hamers","doi":"10.1093/toxsci/kfae131","DOIUrl":null,"url":null,"abstract":"<p><p>Persistent, mobile and toxic (PMT) compounds released to the environment are likely to pollute drinking water sources due to their slow environmental degradation (persistency) and high water solubility (mobility). The aim of the present study was to create in vitro hazard profiles for sixteen triazoles, nine triazines and eleven PFAS based on their agonistic and antagonistic effects in estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) reporter gene assays, their ability to bind human transthyretin (TTR), and their effects on steroidogenesis. The triazole fungicides tetraconazole, bitertanol, fenbuconazole, tebuconazole, cyproconazole, difenoconazole, propiconazole, paclobutrazol and triadimenol had agonistic or antagonistic effects on the ER and AR. Difenoconazole, propiconazole and triadimenol were also found to be TR antagonists. The triazine herbicide ametryn was an ER, AR and TR antagonist. The same nine triazole fungicides and the triazines atrazine, deethyl-atrazine and ametryn affected the secretion of steroid hormones. Furthermore, PFAS compounds PFBS, PFHxS, PFHxA, PFOS, PFOA and GenX and the triazoles bitertanol, difenoconazole and 4-methyl benzotriazole were found to displace T4 from TTR. These results are in line with earlier in vitro and in vivo studies on the endocrine disrupting properties of triazines, triazoles and PFAS. The present study demonstrates that this battery of in vitro bioassays can be used to profile compounds from different classes based on their endocrine disrupting properties as a first step to prioritize them for further research, emission reduction, environmental remediation and regulatory purposes.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae131","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Persistent, mobile and toxic (PMT) compounds released to the environment are likely to pollute drinking water sources due to their slow environmental degradation (persistency) and high water solubility (mobility). The aim of the present study was to create in vitro hazard profiles for sixteen triazoles, nine triazines and eleven PFAS based on their agonistic and antagonistic effects in estrogen receptor (ER), androgen receptor (AR) and thyroid hormone receptor (TR) reporter gene assays, their ability to bind human transthyretin (TTR), and their effects on steroidogenesis. The triazole fungicides tetraconazole, bitertanol, fenbuconazole, tebuconazole, cyproconazole, difenoconazole, propiconazole, paclobutrazol and triadimenol had agonistic or antagonistic effects on the ER and AR. Difenoconazole, propiconazole and triadimenol were also found to be TR antagonists. The triazine herbicide ametryn was an ER, AR and TR antagonist. The same nine triazole fungicides and the triazines atrazine, deethyl-atrazine and ametryn affected the secretion of steroid hormones. Furthermore, PFAS compounds PFBS, PFHxS, PFHxA, PFOS, PFOA and GenX and the triazoles bitertanol, difenoconazole and 4-methyl benzotriazole were found to displace T4 from TTR. These results are in line with earlier in vitro and in vivo studies on the endocrine disrupting properties of triazines, triazoles and PFAS. The present study demonstrates that this battery of in vitro bioassays can be used to profile compounds from different classes based on their endocrine disrupting properties as a first step to prioritize them for further research, emission reduction, environmental remediation and regulatory purposes.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.