Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.

IF 4.9 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Diagnostic and Interventional Imaging Pub Date : 2024-10-03 DOI:10.1016/j.diii.2024.09.012
Jan M Brendel, Jonathan Walterspiel, Florian Hagen, Jens Kübler, Andreas S Brendlin, Saif Afat, Jean-François Paul, Thomas Küstner, Konstantin Nikolaou, Meinrad Gawaz, Simon Greulich, Patrick Krumm, Moritz T Winkelmann
{"title":"Coronary artery disease detection using deep learning and ultrahigh-resolution photon-counting coronary CT angiography.","authors":"Jan M Brendel, Jonathan Walterspiel, Florian Hagen, Jens Kübler, Andreas S Brendlin, Saif Afat, Jean-François Paul, Thomas Küstner, Konstantin Nikolaou, Meinrad Gawaz, Simon Greulich, Patrick Krumm, Moritz T Winkelmann","doi":"10.1016/j.diii.2024.09.012","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).</p><p><strong>Materials and methods: </strong>Consecutive patients with suspected CAD who underwent PC-CCTA between January 2022 and December 2023 were included in this retrospective, single-center study. Non-ultra-high resolution (UHR) PC-CCTA images were analyzed by artificial intelligence using two deep learning models (CorEx, Spimed-AI), and compared to human expert reader assessment using UHR PC-CCTA images. Diagnostic performance for global CAD assessment (at least one significant stenosis ≥ 50 %) was estimated at patient and vessel levels.</p><p><strong>Results: </strong>A total of 140 patients (96 men, 44 women) with a median age of 60 years (first quartile, 51; third quartile, 68) were evaluated. Significant CAD on UHR PC-CCTA was present in 36/140 patients (25.7 %). The sensitivity, specificity, accuracy, positive predictive value), and negative predictive value of deep learning-based CAD were 97.2 %, 81.7 %, 85.7 %, 64.8 %, and 98.9 %, respectively, at the patient level and 96.6 %, 86.7 %, 88.1 %, 53.8 %, and 99.4 %, respectively, at the vessel level. The area under the receiver operating characteristic curve was 0.90 (95 % CI: 0.83-0.94) at the patient level and 0.92 (95 % CI: 0.89-0.94) at the vessel level.</p><p><strong>Conclusion: </strong>Automated deep learning shows remarkable performance for the diagnosis of significant CAD on non-UHR PC-CCTA images. AI pre-reading may be of supportive value to the human reader in daily clinical practice to target and validate coronary artery stenosis using UHR PC-CCTA.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.diii.2024.09.012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The purpose of this study was to evaluate the diagnostic performance of automated deep learning in the detection of coronary artery disease (CAD) on photon-counting coronary CT angiography (PC-CCTA).

Materials and methods: Consecutive patients with suspected CAD who underwent PC-CCTA between January 2022 and December 2023 were included in this retrospective, single-center study. Non-ultra-high resolution (UHR) PC-CCTA images were analyzed by artificial intelligence using two deep learning models (CorEx, Spimed-AI), and compared to human expert reader assessment using UHR PC-CCTA images. Diagnostic performance for global CAD assessment (at least one significant stenosis ≥ 50 %) was estimated at patient and vessel levels.

Results: A total of 140 patients (96 men, 44 women) with a median age of 60 years (first quartile, 51; third quartile, 68) were evaluated. Significant CAD on UHR PC-CCTA was present in 36/140 patients (25.7 %). The sensitivity, specificity, accuracy, positive predictive value), and negative predictive value of deep learning-based CAD were 97.2 %, 81.7 %, 85.7 %, 64.8 %, and 98.9 %, respectively, at the patient level and 96.6 %, 86.7 %, 88.1 %, 53.8 %, and 99.4 %, respectively, at the vessel level. The area under the receiver operating characteristic curve was 0.90 (95 % CI: 0.83-0.94) at the patient level and 0.92 (95 % CI: 0.89-0.94) at the vessel level.

Conclusion: Automated deep learning shows remarkable performance for the diagnosis of significant CAD on non-UHR PC-CCTA images. AI pre-reading may be of supportive value to the human reader in daily clinical practice to target and validate coronary artery stenosis using UHR PC-CCTA.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习和超高分辨率光子计数冠状动脉 CT 血管造影检测冠状动脉疾病。
目的:本研究旨在评估自动深度学习在光子计数冠状动脉 CT 血管造影(PC-CCTA)中检测冠状动脉疾病(CAD)的诊断性能:这项回顾性单中心研究纳入了2022年1月至2023年12月期间接受PC-CCTA检查的连续疑似CAD患者。使用两种深度学习模型(CorEx、Spimed-AI)对非超高分辨率(UHR)PC-CCTA 图像进行人工智能分析,并与使用 UHR PC-CCTA 图像的人类专家读者评估进行比较。对患者和血管层面的全局 CAD 评估(至少有一处明显狭窄≥50%)的诊断性能进行了估算:共评估了 140 名患者(96 名男性,44 名女性),中位年龄为 60 岁(第一四分位数,51 岁;第三四分位数,68 岁)。36/140 例患者(25.7%)的 UHR PC-CCTA 显示存在明显的 CAD。基于深度学习的 CAD 的敏感性、特异性、准确性、阳性预测值和阴性预测值在患者层面分别为 97.2%、81.7%、85.7%、64.8% 和 98.9%,在血管层面分别为 96.6%、86.7%、88.1%、53.8% 和 99.4%。患者水平的接收者操作特征曲线下面积为 0.90(95 % CI:0.83-0.94),血管水平的接收者操作特征曲线下面积为 0.92(95 % CI:0.89-0.94):自动深度学习在诊断非 UHR PC-CCTA 图像上的重大 CAD 方面表现出色。在日常临床实践中,人工智能预读可能对人类阅读者使用 UHR PC-CCTA 瞄准和验证冠状动脉狭窄具有支持价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Diagnostic and Interventional Imaging
Diagnostic and Interventional Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
8.50
自引率
29.10%
发文量
126
审稿时长
11 days
期刊介绍: Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English. Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.
期刊最新文献
Diagnostic and prognostic value of MRI-based Node-RADS for the assessment of regional lymph node metastasis in renal cell carcinoma. Evaluation of a deep learning-based software to automatically detect and quantify breast arterial calcifications on digital mammogram. Artificial intelligence for bone fracture detection: A promising tool but no substitute for human expertise. CT, MRI and contrast-enhanced ultrasound features of mucinous cystic neoplasm of the liver. Generative AI smartphones: From entertainment to potentially serious risks in radiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1