{"title":"Phosphorylation at the D56 residue of MtrA in Mycobacterium tuberculosis enhances its DNA binding affinity by modulating inter-domain interaction","authors":"Subhashree Subhasmita Nayak, Ramadas Krishna","doi":"10.1016/j.compbiolchem.2024.108222","DOIUrl":null,"url":null,"abstract":"<div><div>The response regulator, MtrA, plays a major role in adaptation to the host environment, cell division, replication, and dormancy activation of <em>Mycobacterium tuberculosis</em> (Mtb). The phosphorylation of the response regulator MtrA alters the downstream activity, typically involving changes in DNA binding activity. However, there is a substantial knowledge gap in understanding the phosphorylation-mediated structural changes in MtrA. Additionally, the active conformation of the protein has yet to be determined. Therefore, in this study, we have investigated the phosphorylation-induced conformational changes of MtrA using all-atom molecular dynamics simulations under various phosphorylation conditions. The results from this study demonstrate that the phosphorylation at D56 (pD56-MtrA) increases the compactness of the MtrA protein by stabilizing the inter-domain interaction between the regulatory domain and DNA binding domain. Notably, the higher occupancy H-bond (over 95 %) between Arg200-Asn100 in case of the pD56-MtrA condition, which is otherwise absent in the non-phosphorylated (uMtrA) condition, suggests the importance of this interaction in the active conformation of the protein. The dynamic cross-correlation analysis reveals that phosphorylation (especially pD56-MtrA) reduces the anti-correlated motions and increases correlated motions between different domains. Moreover, the higher DNA binding affinity of pD56-MtrA compared to uMtrA supported by molecular docking and MD simulation followed by MMPBSA analysis suggests that pD56-MtrA is the possible active conformation of the MtrA protein. Overall, this investigation elucidates the key structural changes in MtrA under different phosphorylated conditions, which might help in designing novel therapeutics against tuberculosis.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"113 ","pages":"Article 108222"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147692712400210X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The response regulator, MtrA, plays a major role in adaptation to the host environment, cell division, replication, and dormancy activation of Mycobacterium tuberculosis (Mtb). The phosphorylation of the response regulator MtrA alters the downstream activity, typically involving changes in DNA binding activity. However, there is a substantial knowledge gap in understanding the phosphorylation-mediated structural changes in MtrA. Additionally, the active conformation of the protein has yet to be determined. Therefore, in this study, we have investigated the phosphorylation-induced conformational changes of MtrA using all-atom molecular dynamics simulations under various phosphorylation conditions. The results from this study demonstrate that the phosphorylation at D56 (pD56-MtrA) increases the compactness of the MtrA protein by stabilizing the inter-domain interaction between the regulatory domain and DNA binding domain. Notably, the higher occupancy H-bond (over 95 %) between Arg200-Asn100 in case of the pD56-MtrA condition, which is otherwise absent in the non-phosphorylated (uMtrA) condition, suggests the importance of this interaction in the active conformation of the protein. The dynamic cross-correlation analysis reveals that phosphorylation (especially pD56-MtrA) reduces the anti-correlated motions and increases correlated motions between different domains. Moreover, the higher DNA binding affinity of pD56-MtrA compared to uMtrA supported by molecular docking and MD simulation followed by MMPBSA analysis suggests that pD56-MtrA is the possible active conformation of the MtrA protein. Overall, this investigation elucidates the key structural changes in MtrA under different phosphorylated conditions, which might help in designing novel therapeutics against tuberculosis.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.