Low Complexity Learning-Based QTMTT Partitioning Scheme for Inter Coding in VVC Encoder

IF 3.4 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Access Pub Date : 2024-09-27 DOI:10.1109/ACCESS.2024.3469089
Ibrahim Taabane;Daniel Menard;Anass Mansouri;Selima Sahraoui;Ali Ahaitouf
{"title":"Low Complexity Learning-Based QTMTT Partitioning Scheme for Inter Coding in VVC Encoder","authors":"Ibrahim Taabane;Daniel Menard;Anass Mansouri;Selima Sahraoui;Ali Ahaitouf","doi":"10.1109/ACCESS.2024.3469089","DOIUrl":null,"url":null,"abstract":"The Versatile Video Coding (VVC) standard, finalized in 2020 by the Joint Video Experts Team (JVET) and the Video Coding Experts Group (VCEG), marks a major advancement in video compression technology, offering a 50% efficiency improvement over its predecessor, the High-Efficiency Video Coding (HEVC) standard. A key innovation in the VVC standard is the Quad Tree with nested Multi-Type Tree (QTMTT) structure, essential for the partitioning process. However, this enhancement has led to increased coding complexity, posing challenges for real-time applications. To address this, our paper focuses on optimizing the partitioning process in the VVC encoder under the Random Access (RA) configuration. We propose a novel approach that leverages inter-prediction by integrating both coding and motion information across inter-frames to enhance coding efficiency. This solution is implemented on the Fraunhofer Versatile Video Encoder (VVenC). It utilizes a set of lightweight Light Gradient Boosting Machine (LightGBM) binary classifiers to accurately predict the optimal split mode for each Coding Unit (CU). Consequently, our approach significantly accelerates the VVenC encoding process. Experimental results show that our method reduces the runtime of the slower preset by 43.21%, with only a slight bitrate increase of 2.9%. These improvements not only significantly reduce computational complexity but also outperform several existing state-of-the-art methods.","PeriodicalId":13079,"journal":{"name":"IEEE Access","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697171","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Access","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10697171/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The Versatile Video Coding (VVC) standard, finalized in 2020 by the Joint Video Experts Team (JVET) and the Video Coding Experts Group (VCEG), marks a major advancement in video compression technology, offering a 50% efficiency improvement over its predecessor, the High-Efficiency Video Coding (HEVC) standard. A key innovation in the VVC standard is the Quad Tree with nested Multi-Type Tree (QTMTT) structure, essential for the partitioning process. However, this enhancement has led to increased coding complexity, posing challenges for real-time applications. To address this, our paper focuses on optimizing the partitioning process in the VVC encoder under the Random Access (RA) configuration. We propose a novel approach that leverages inter-prediction by integrating both coding and motion information across inter-frames to enhance coding efficiency. This solution is implemented on the Fraunhofer Versatile Video Encoder (VVenC). It utilizes a set of lightweight Light Gradient Boosting Machine (LightGBM) binary classifiers to accurately predict the optimal split mode for each Coding Unit (CU). Consequently, our approach significantly accelerates the VVenC encoding process. Experimental results show that our method reduces the runtime of the slower preset by 43.21%, with only a slight bitrate increase of 2.9%. These improvements not only significantly reduce computational complexity but also outperform several existing state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于学习的低复杂度 QTMTT 分区方案用于 VVC 编码器中的交互编码
通用视频编码(VVC)标准由联合视频专家组(JVET)和视频编码专家组(VCEG)于 2020 年最终确定,标志着视频压缩技术的一大进步,比其前身高效视频编码(HEVC)标准的效率提高了 50%。VVC 标准的一项关键创新是嵌套多类型树的四叉树(QTMTT)结构,这对分区过程至关重要。然而,这一改进增加了编码的复杂性,给实时应用带来了挑战。为了解决这个问题,我们的论文重点关注在随机存取(RA)配置下优化 VVC 编码器中的分区过程。我们提出了一种新方法,通过整合帧间编码和运动信息,利用帧间预测来提高编码效率。这一解决方案是在弗劳恩霍夫多功能视频编码器(VVenC)上实现的。它利用一组轻量级光梯度提升机(LightGBM)二进制分类器来准确预测每个编码单元(CU)的最佳分割模式。因此,我们的方法大大加快了 VVenC 编码过程。实验结果表明,我们的方法将较慢预设的运行时间缩短了 43.21%,而比特率仅略微增加了 2.9%。这些改进不仅大大降低了计算复杂度,而且优于现有的几种最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Access
IEEE Access COMPUTER SCIENCE, INFORMATION SYSTEMSENGIN-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
9.80
自引率
7.70%
发文量
6673
审稿时长
6 weeks
期刊介绍: IEEE Access® is a multidisciplinary, open access (OA), applications-oriented, all-electronic archival journal that continuously presents the results of original research or development across all of IEEE''s fields of interest. IEEE Access will publish articles that are of high interest to readers, original, technically correct, and clearly presented. Supported by author publication charges (APC), its hallmarks are a rapid peer review and publication process with open access to all readers. Unlike IEEE''s traditional Transactions or Journals, reviews are "binary", in that reviewers will either Accept or Reject an article in the form it is submitted in order to achieve rapid turnaround. Especially encouraged are submissions on: Multidisciplinary topics, or applications-oriented articles and negative results that do not fit within the scope of IEEE''s traditional journals. Practical articles discussing new experiments or measurement techniques, interesting solutions to engineering. Development of new or improved fabrication or manufacturing techniques. Reviews or survey articles of new or evolving fields oriented to assist others in understanding the new area.
期刊最新文献
Correction to “Digital Tools, Technologies, and Learning Methodologies for Education 4.0 Frameworks: A STEM Oriented Survey” Retraction Notice: Space Elements of Computer Music Production Based on VR Technology Retraction Notice: Fast Recognition Method of Football Robot’s Graphics From the VR Perspective Retraction Notice: Target Recognition Method of Rehabilitation Robot Based on Image Local Features Correction to “Blockchain-IoT Healthcare Applications and Trends: A Review”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1