Event-Triggered Multi-Sensor Scheduling for Remote State Estimation Over Packet-Dropping Networks

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-10-04 DOI:10.1109/TSP.2024.3473988
Yuxing Zhong;Lingying Huang;Yilin Mo;Dawei Shi;Ling Shi
{"title":"Event-Triggered Multi-Sensor Scheduling for Remote State Estimation Over Packet-Dropping Networks","authors":"Yuxing Zhong;Lingying Huang;Yilin Mo;Dawei Shi;Ling Shi","doi":"10.1109/TSP.2024.3473988","DOIUrl":null,"url":null,"abstract":"We study the multi-sensor remote state estimation problem over packet-dropping networks and employ a stochastic event-triggered scheduler to conserve energy and bandwidth. Due to packet drops, the Gaussian property of the system state, commonly used in the literature, no longer holds. We prove that the state instead follows a Gaussian mixture (GM) model and develop the corresponding (optimal) minimum mean-squared error (MMSE) estimator. To tackle the exponential complexity of the optimal estimator, the optimal Gaussian approximate (OGA) estimator and its heuristic GM extension are further derived. Our simulations show that the approximate estimators perform similarly to the optimal estimator with significantly reduced computation time. Furthermore, our proposed scheduler outperforms standard event-triggered schedulers in a target-tracking scenario.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"5036-5047"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10705413/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We study the multi-sensor remote state estimation problem over packet-dropping networks and employ a stochastic event-triggered scheduler to conserve energy and bandwidth. Due to packet drops, the Gaussian property of the system state, commonly used in the literature, no longer holds. We prove that the state instead follows a Gaussian mixture (GM) model and develop the corresponding (optimal) minimum mean-squared error (MMSE) estimator. To tackle the exponential complexity of the optimal estimator, the optimal Gaussian approximate (OGA) estimator and its heuristic GM extension are further derived. Our simulations show that the approximate estimators perform similarly to the optimal estimator with significantly reduced computation time. Furthermore, our proposed scheduler outperforms standard event-triggered schedulers in a target-tracking scenario.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过丢包网络进行远程状态估计的事件触发式多传感器调度
我们研究了丢包网络上的多传感器远程状态估计问题,并采用随机事件触发调度器来节省能量和带宽。由于丢包,文献中常用的系统状态高斯特性不再成立。我们证明系统状态遵循高斯混合(GM)模型,并开发了相应的(最优)最小均方误差(MMSE)估计器。为了解决最优估计器的指数复杂性问题,我们进一步推导出最优高斯近似(OGA)估计器及其启发式 GM 扩展。模拟结果表明,近似估计器的性能与最优估计器类似,但计算时间大大减少。此外,在目标跟踪场景中,我们提出的调度程序优于标准事件触发调度程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent Data-Driven Quickest Change Detection in (Hidden) Markov Models Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1