Can ZnO/Cu catalyst provide promising activity for glycerol direct dehydrogenation? A combined density functional theory and coverage-dependent microkinetics study
Wenfeng Wang , Huixia Ma , Jiqin Zhu , Feng Zhou , Haoxiang Xu , Daojian Cheng
{"title":"Can ZnO/Cu catalyst provide promising activity for glycerol direct dehydrogenation? A combined density functional theory and coverage-dependent microkinetics study","authors":"Wenfeng Wang , Huixia Ma , Jiqin Zhu , Feng Zhou , Haoxiang Xu , Daojian Cheng","doi":"10.1016/j.jcat.2024.115786","DOIUrl":null,"url":null,"abstract":"<div><div>Non-oxidative dehydrogenation (NODH) reaction of glycerol is a perfect atom economical technical route to produce higher-value 1,3-dihydroxyacetone (DHA). Cu-based catalyst (especially ZnO/Cu system), is known as active species for alcohol dehydrogenation, which may be also promising one for glycerol NODH. In this study, we combine coverage-dependent free energy profile using first-principle calculation, and microkinetic model, to investigate the NODH of glycerol on the ZnO/Cu(111) surface, and a detailed comparison is made with Cu (111) surface. The coverage-dependent microkinetic model takes into account the lateral adsorbate–adsorbate self-interactions and cross-interactions, and their effect on binding energy of both intermediate and transition state. Besides, it guarantees the reaction kinetics is based on the coverage self-consistent between surface model and microkinetic result under practically reaction conditions. Compared with coverage-dependent kinetics simulation (20 %–30 %), coverage-independent model overestimates the DHA selectivity on Cu (111) (over 90 %). Our coverage-dependent kinetics simulation illustrates that both glycerol conversion and DHA selectivity are most determined by the first dehydrogenation step (O<img>H bond scission) of glycerol on Cu (111). However, when ZnO cluster adsorbed on the Cu (111) surface, ZnO cluster promotes the electron transferring between glycerol and Cu sites, which accelerates O<img>H bond scission process of glycerol. Under coverage-dependent microkinetic model, the turnover frequency and selectivity of DHA on ZnO/Cu(111) get much improvement compared with Cu (111). Finally, the superior of ZnO/Cu(111) is further proved by continuous stirred tank reactor simulation, where NODH of glycerol need shorter residence times or lower temperature to reach 100 % conversion, as well as keep higher DHA selectivity.</div></div>","PeriodicalId":346,"journal":{"name":"Journal of Catalysis","volume":"439 ","pages":"Article 115786"},"PeriodicalIF":6.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021951724004998","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Non-oxidative dehydrogenation (NODH) reaction of glycerol is a perfect atom economical technical route to produce higher-value 1,3-dihydroxyacetone (DHA). Cu-based catalyst (especially ZnO/Cu system), is known as active species for alcohol dehydrogenation, which may be also promising one for glycerol NODH. In this study, we combine coverage-dependent free energy profile using first-principle calculation, and microkinetic model, to investigate the NODH of glycerol on the ZnO/Cu(111) surface, and a detailed comparison is made with Cu (111) surface. The coverage-dependent microkinetic model takes into account the lateral adsorbate–adsorbate self-interactions and cross-interactions, and their effect on binding energy of both intermediate and transition state. Besides, it guarantees the reaction kinetics is based on the coverage self-consistent between surface model and microkinetic result under practically reaction conditions. Compared with coverage-dependent kinetics simulation (20 %–30 %), coverage-independent model overestimates the DHA selectivity on Cu (111) (over 90 %). Our coverage-dependent kinetics simulation illustrates that both glycerol conversion and DHA selectivity are most determined by the first dehydrogenation step (OH bond scission) of glycerol on Cu (111). However, when ZnO cluster adsorbed on the Cu (111) surface, ZnO cluster promotes the electron transferring between glycerol and Cu sites, which accelerates OH bond scission process of glycerol. Under coverage-dependent microkinetic model, the turnover frequency and selectivity of DHA on ZnO/Cu(111) get much improvement compared with Cu (111). Finally, the superior of ZnO/Cu(111) is further proved by continuous stirred tank reactor simulation, where NODH of glycerol need shorter residence times or lower temperature to reach 100 % conversion, as well as keep higher DHA selectivity.
期刊介绍:
The Journal of Catalysis publishes scholarly articles on both heterogeneous and homogeneous catalysis, covering a wide range of chemical transformations. These include various types of catalysis, such as those mediated by photons, plasmons, and electrons. The focus of the studies is to understand the relationship between catalytic function and the underlying chemical properties of surfaces and metal complexes.
The articles in the journal offer innovative concepts and explore the synthesis and kinetics of inorganic solids and homogeneous complexes. Furthermore, they discuss spectroscopic techniques for characterizing catalysts, investigate the interaction of probes and reacting species with catalysts, and employ theoretical methods.
The research presented in the journal should have direct relevance to the field of catalytic processes, addressing either fundamental aspects or applications of catalysis.