Novel natural lipids based NLC containing finasteride improved androgenetic alopecia treatment in rats

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY International Journal of Pharmaceutics Pub Date : 2024-10-04 DOI:10.1016/j.ijpharm.2024.124804
{"title":"Novel natural lipids based NLC containing finasteride improved androgenetic alopecia treatment in rats","authors":"","doi":"10.1016/j.ijpharm.2024.124804","DOIUrl":null,"url":null,"abstract":"<div><div>Androgenetic alopecia (AGA) is the most common hair loss disorder, affecting millions of men and women worldwide. Current formulations used to treat this condition often lead to a wide variety of side effects, ranging from allergies to sexual disfunction, especially when those drugs are administered orally. In this study, we developed and tested unique formulations containing nanostructured lipid carriers (NLC) composed of lipids extracted from fruit seeds, carrying finasteride to enhance efficacy of AGA treatment. By stabilizing the hydrophobic compounds in the solid matrix, three formulations of NLC were engineered and successfully prepared. Further an <em>in vivo</em> model of AGA was induced in rats by the administration of testosterone, as a platform to evaluate the efficiency of the formulations. The chosen formulation exhibited high bioavailability, medium size of 124.5 nm and PdI of 0.143, without systemic absorption. In addition, it promoted efficient and significant follicle restoration in AGA induced rats by increasing number of active bulbs and showed to be a safe formulation for topical application. The results of this research indicate that the presented formulation has significant potential to yield improved outcomes in AGA treatment.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037851732401038X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Androgenetic alopecia (AGA) is the most common hair loss disorder, affecting millions of men and women worldwide. Current formulations used to treat this condition often lead to a wide variety of side effects, ranging from allergies to sexual disfunction, especially when those drugs are administered orally. In this study, we developed and tested unique formulations containing nanostructured lipid carriers (NLC) composed of lipids extracted from fruit seeds, carrying finasteride to enhance efficacy of AGA treatment. By stabilizing the hydrophobic compounds in the solid matrix, three formulations of NLC were engineered and successfully prepared. Further an in vivo model of AGA was induced in rats by the administration of testosterone, as a platform to evaluate the efficiency of the formulations. The chosen formulation exhibited high bioavailability, medium size of 124.5 nm and PdI of 0.143, without systemic absorption. In addition, it promoted efficient and significant follicle restoration in AGA induced rats by increasing number of active bulbs and showed to be a safe formulation for topical application. The results of this research indicate that the presented formulation has significant potential to yield improved outcomes in AGA treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含有非那雄胺的新型天然脂基 NLC 可改善大鼠雄激素性脱发的治疗效果。
雄激素性脱发(AGA)是最常见的脱发疾病,影响着全球数百万男性和女性。目前用于治疗这种疾病的制剂往往会导致各种各样的副作用,从过敏到性功能障碍,尤其是在口服给药的情况下。在这项研究中,我们开发并测试了含有纳米结构脂质载体(NLC)的独特配方,该载体由从水果种子中提取的脂质组成,并携带非那雄胺,以提高 AGA 的治疗效果。通过将疏水性化合物稳定在固体基质中,成功制备了三种 NLC 配方。此外,还通过给大鼠注射睾酮诱发了 AGA 的体内模型,以此作为评估制剂功效的平台。所选制剂具有较高的生物利用度、124.5 纳米的中等尺寸和 0.143 的 PdI,不会被全身吸收。此外,它还通过增加活性球的数量,促进了 AGA 诱导的大鼠高效、显著的毛囊恢复,并显示出这是一种可用于局部应用的安全配方。这项研究的结果表明,所介绍的制剂在改善 AGA 治疗效果方面具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
期刊最新文献
Chitosan gel loaded with carbon dots and mesoporous hydroxyapatite nanoparticles as a topical formulation for skin regeneration: An animal study Quality by design-based optimization of teriflunomide and quercetin combinational topical transferosomes for the treatment of rheumatoid arthritis Nasal administration of Xingnaojing biomimetic nanoparticles for the treatment of ischemic stroke Silk fibroin/chitosan thiourea hydrogel scaffold with vancomycin and quercetin-loaded PLGA nanoparticles for treating chronic MRSA osteomyelitis in rats Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1