Multibody dynamics-based musculoskeletal modeling for gait analysis: a systematic review.

IF 5.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL Journal of NeuroEngineering and Rehabilitation Pub Date : 2024-10-05 DOI:10.1186/s12984-024-01458-y
Muhammad Abdullah, Abdul Aziz Hulleck, Rateb Katmah, Kinda Khalaf, Marwan El-Rich
{"title":"Multibody dynamics-based musculoskeletal modeling for gait analysis: a systematic review.","authors":"Muhammad Abdullah, Abdul Aziz Hulleck, Rateb Katmah, Kinda Khalaf, Marwan El-Rich","doi":"10.1186/s12984-024-01458-y","DOIUrl":null,"url":null,"abstract":"<p><p>Beyond qualitative assessment, gait analysis involves the quantitative evaluation of various parameters such as joint kinematics, spatiotemporal metrics, external forces, and muscle activation patterns and forces. Utilizing multibody dynamics-based musculoskeletal (MSK) modeling provides a time and cost-effective non-invasive tool for the prediction of internal joint and muscle forces. Recent advancements in the development of biofidelic MSK models have facilitated their integration into clinical decision-making processes, including quantitative diagnostics, functional assessment of prosthesis and implants, and devising data-driven gait rehabilitation protocols. Through an extensive search and meta-analysis of over 116 studies, this PRISMA-based systematic review provides a comprehensive overview of different existing multibody MSK modeling platforms, including generic templates, methods for personalization to individual subjects, and the solutions used to address statically indeterminate problems. Additionally, it summarizes post-processing techniques and the practical applications of MSK modeling tools. In the field of biomechanics, MSK modeling provides an indispensable tool for simulating and understanding human movement dynamics. However, limitations which remain elusive include the absence of MSK modeling templates based on female anatomy underscores the need for further advancements in this area.</p>","PeriodicalId":16384,"journal":{"name":"Journal of NeuroEngineering and Rehabilitation","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452939/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroEngineering and Rehabilitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12984-024-01458-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Beyond qualitative assessment, gait analysis involves the quantitative evaluation of various parameters such as joint kinematics, spatiotemporal metrics, external forces, and muscle activation patterns and forces. Utilizing multibody dynamics-based musculoskeletal (MSK) modeling provides a time and cost-effective non-invasive tool for the prediction of internal joint and muscle forces. Recent advancements in the development of biofidelic MSK models have facilitated their integration into clinical decision-making processes, including quantitative diagnostics, functional assessment of prosthesis and implants, and devising data-driven gait rehabilitation protocols. Through an extensive search and meta-analysis of over 116 studies, this PRISMA-based systematic review provides a comprehensive overview of different existing multibody MSK modeling platforms, including generic templates, methods for personalization to individual subjects, and the solutions used to address statically indeterminate problems. Additionally, it summarizes post-processing techniques and the practical applications of MSK modeling tools. In the field of biomechanics, MSK modeling provides an indispensable tool for simulating and understanding human movement dynamics. However, limitations which remain elusive include the absence of MSK modeling templates based on female anatomy underscores the need for further advancements in this area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多体动力学的步态分析肌肉骨骼建模:系统综述。
除定性评估外,步态分析还涉及对各种参数的定量评估,如关节运动学、时空指标、外力以及肌肉激活模式和力量。利用基于多体动力学的肌肉骨骼(MSK)建模为预测内部关节和肌肉力提供了一种省时、经济的非侵入性工具。最近在开发生物保真 MSK 模型方面取得的进展促进了这些模型与临床决策过程的整合,包括定量诊断、假肢和植入物的功能评估以及设计数据驱动的步态康复方案。通过对超过 116 项研究的广泛搜索和荟萃分析,这篇基于 PRISMA 的系统综述全面概述了现有的不同多体 MSK 建模平台,包括通用模板、针对个体受试者的个性化方法以及用于解决静态不确定问题的解决方案。此外,它还总结了 MSK 建模工具的后处理技术和实际应用。在生物力学领域,MSK 建模为模拟和理解人体运动动力学提供了不可或缺的工具。然而,由于缺乏基于女性解剖学的 MSK 建模模板等限制因素,该领域仍有待进一步发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of NeuroEngineering and Rehabilitation
Journal of NeuroEngineering and Rehabilitation 工程技术-工程:生物医学
CiteScore
9.60
自引率
3.90%
发文量
122
审稿时长
24 months
期刊介绍: Journal of NeuroEngineering and Rehabilitation considers manuscripts on all aspects of research that result from cross-fertilization of the fields of neuroscience, biomedical engineering, and physical medicine & rehabilitation.
期刊最新文献
Comparison of synergy extrapolation and static optimization for estimating multiple unmeasured muscle activations during walking. Immersive virtual reality for learning exoskeleton-like virtual walking: a feasibility study. Instrumented assessment of lower and upper motor neuron signs in amyotrophic lateral sclerosis using robotic manipulation: an explorative study. Rest the brain to learn new gait patterns after stroke. Effects of virtual reality rehabilitation after spinal cord injury: a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1