Xianhong Wang, Cheng Deng, Ruize Kong, Zhimei Gong, Hongying Dai, Yang Song, Yunzhu Wu, Guoli Bi, Conghui Ai, Qiu Bi
{"title":"Intratumoral and peritumoral habitat imaging based on multiparametric MRI to predict cervical stromal invasion in early-stage endometrial carcinoma.","authors":"Xianhong Wang, Cheng Deng, Ruize Kong, Zhimei Gong, Hongying Dai, Yang Song, Yunzhu Wu, Guoli Bi, Conghui Ai, Qiu Bi","doi":"10.1016/j.acra.2024.09.039","DOIUrl":null,"url":null,"abstract":"<p><strong>Rationale and objectives: </strong>To evaluate the validity of multiparametric MRI-based intratumoral and peritumoral habitat imaging for predicting cervical stromal invasion (CSI) in patients with early-stage endometrial carcinoma (EC) and to compare the performance of structural and functional habitats.</p><p><strong>Materials and methods: </strong>The preoperative MRI and clinical data of 680 patients with early-stage EC from three centers were retrospectively analyzed. Based on cohort-level, gaussian mixture model (GMM) algorithm was used for habitat clustering of MRI images. Structural habitats were clustered using T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI), and functional habitats were clustered using apparent diffusion coefficient (ADC) mapping and CE-T1WI. Habitat parameters were extracted from four volumes of interest (VOIs): intratumoral regions (ROI), peritumoral loops of 3 mm dilation (L3), intratumoral regions + peritumoral loops of 3 mm dilation (R3), and peritumoral loops of 3 mm dilation + peritumoral loops of 3 mm erosion (DE3). Clinical-habitat models were constructed by combining clinical independent predictors and optimal habitat models. The model performance was evaluated by the area under the curve (AUC).</p><p><strong>Results: </strong>Deep myometrial invasion (DMI) was an independent predictor. L3 models showed the best performance for both structural and functional habitats, and the L3 functional habitat model had the highest average AUC (0.807) in external test groups, and the average AUC increased to 0.815 when combing with the clinical independent predictor.</p><p><strong>Conclusion: </strong>Multiparametric MRI-based intratumoral and peritumoral habitat imaging provides a noninvasive approach to predict CSI in EC patients. The combination of the clinical predictor with the L3 functional habitat model improved predictive performance.</p>","PeriodicalId":50928,"journal":{"name":"Academic Radiology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Academic Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.acra.2024.09.039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Rationale and objectives: To evaluate the validity of multiparametric MRI-based intratumoral and peritumoral habitat imaging for predicting cervical stromal invasion (CSI) in patients with early-stage endometrial carcinoma (EC) and to compare the performance of structural and functional habitats.
Materials and methods: The preoperative MRI and clinical data of 680 patients with early-stage EC from three centers were retrospectively analyzed. Based on cohort-level, gaussian mixture model (GMM) algorithm was used for habitat clustering of MRI images. Structural habitats were clustered using T2-weighted imaging (T2WI) and contrast-enhanced T1-weighted imaging (CE-T1WI), and functional habitats were clustered using apparent diffusion coefficient (ADC) mapping and CE-T1WI. Habitat parameters were extracted from four volumes of interest (VOIs): intratumoral regions (ROI), peritumoral loops of 3 mm dilation (L3), intratumoral regions + peritumoral loops of 3 mm dilation (R3), and peritumoral loops of 3 mm dilation + peritumoral loops of 3 mm erosion (DE3). Clinical-habitat models were constructed by combining clinical independent predictors and optimal habitat models. The model performance was evaluated by the area under the curve (AUC).
Results: Deep myometrial invasion (DMI) was an independent predictor. L3 models showed the best performance for both structural and functional habitats, and the L3 functional habitat model had the highest average AUC (0.807) in external test groups, and the average AUC increased to 0.815 when combing with the clinical independent predictor.
Conclusion: Multiparametric MRI-based intratumoral and peritumoral habitat imaging provides a noninvasive approach to predict CSI in EC patients. The combination of the clinical predictor with the L3 functional habitat model improved predictive performance.
期刊介绍:
Academic Radiology publishes original reports of clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, image-guided interventions and related techniques. It also includes brief technical reports describing original observations, techniques, and instrumental developments; state-of-the-art reports on clinical issues, new technology and other topics of current medical importance; meta-analyses; scientific studies and opinions on radiologic education; and letters to the Editor.