{"title":"A model of mechanical loading of the lungs including gravity and a balancing heterogeneous pleural pressure","authors":"Alice Peyraut, Martin Genet","doi":"10.1007/s10237-024-01876-w","DOIUrl":null,"url":null,"abstract":"<div><p>Recent years have seen the development of multiple <i>in silico</i> lung models, notably with the aim of improving patient care for pulmonary diseases. These models vary in complexity and typically only consider the implementation of pleural pressure, a depression that keeps the lungs inflated. Gravity, often considered negligible compared to pleural pressure, has been largely overlooked, also due to the complexity of formulating physiological boundary conditions to counterbalance it. However, gravity is known to affect pulmonary functions, such as ventilation. In this study, we incorporated gravity into a recent lung poromechanical model. To do so, in addition to the gravitational body force, we proposed novel boundary conditions consisting in a heterogeneous pleural pressure field constrained to counterbalance gravity to reach global equilibrium of applied forces. We assessed the impact of gravity on the global and local behavior of the model, including the pressure–volume response and porosity field. Our findings reveal that gravity, despite being small, influences lung response. Specifically, the inclusion of gravity in our model led to the emergence of heterogeneities in deformation and stress distribution, compatible with <i>in vivo</i> imaging data. This could provide valuable insights for predicting the progression of certain pulmonary diseases by correlating areas subjected to higher deformation and stresses with disease evolution patterns.\n</p></div>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":"23 6","pages":"1933 - 1962"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10237-024-01876-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Recent years have seen the development of multiple in silico lung models, notably with the aim of improving patient care for pulmonary diseases. These models vary in complexity and typically only consider the implementation of pleural pressure, a depression that keeps the lungs inflated. Gravity, often considered negligible compared to pleural pressure, has been largely overlooked, also due to the complexity of formulating physiological boundary conditions to counterbalance it. However, gravity is known to affect pulmonary functions, such as ventilation. In this study, we incorporated gravity into a recent lung poromechanical model. To do so, in addition to the gravitational body force, we proposed novel boundary conditions consisting in a heterogeneous pleural pressure field constrained to counterbalance gravity to reach global equilibrium of applied forces. We assessed the impact of gravity on the global and local behavior of the model, including the pressure–volume response and porosity field. Our findings reveal that gravity, despite being small, influences lung response. Specifically, the inclusion of gravity in our model led to the emergence of heterogeneities in deformation and stress distribution, compatible with in vivo imaging data. This could provide valuable insights for predicting the progression of certain pulmonary diseases by correlating areas subjected to higher deformation and stresses with disease evolution patterns.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.