Katheryn Klajman, Peter Beckett, Graeme Spiers, Kabwe Nkongolo
{"title":"Effects of aerial liming on soil chemical and biological properties in metal contaminated and inaccessible lands in Ontario (Canada).","authors":"Katheryn Klajman, Peter Beckett, Graeme Spiers, Kabwe Nkongolo","doi":"10.1007/s10646-024-02804-5","DOIUrl":null,"url":null,"abstract":"<p><p>The manual addition of lime to soil, in addition to tree planting and fertilization have been the dominant strategy described in restoration protocols for ecosystems damaged by acid rain and metal contamination. Investigations on aerial-limed soils in inaccessible lands are limited. The objective of this study was to assess the effects of aerial liming on soil pH, organic matter, microbial biomass, and enzymatic activities, and aboveground plant population quality in metal-contaminated lands in northern Ontario, Canada. Soil samples were collected from three sites around the City of Greater Sudbury with each pair being composed of a reclaimed (areal-limed) site and an adjacent undisturbed (unlimed) area. Soil physico-chemistry, microbial biomass (assessed by Phospholipid fatty acid analysis) and enzymatic activities were analyzed. Soil pH was higher in limed sites compared to unlimed at recently restored sites (Baby Lake and Wahnapitae) but not at the oldest reclaimed site (HWY 80 N). Organic matter was higher in limed areas compared to the unlimed reference site only at most recently reclaimed site at Baby Lake. Aboveground plant population health was visibly improved in limed sites compared to unlimed areas. Metal concentrations of iron (Fe) and arsenic (As), total microbial biomasses, gram-negative bacterial, fungal, and eukaryotic biomasses were all significantly increased in the limed soils compared to the unlimed samples. The same trend was observed for the activities of three of the enzymes tested, β-N-acetylglucosaminidase (BG), aryl sulfatase (AS), and glycine aminopeptidase (GAP). Interestingly, strong positive correlations between the levels of soil organic matter, microbial biomasses, and NAGase and ALP activities were observed. Although expensive, aerial liming is effective in restoring inaccessible sites impacted by smelting operations where other methods cannot easily be used.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1145-1160"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02804-5","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The manual addition of lime to soil, in addition to tree planting and fertilization have been the dominant strategy described in restoration protocols for ecosystems damaged by acid rain and metal contamination. Investigations on aerial-limed soils in inaccessible lands are limited. The objective of this study was to assess the effects of aerial liming on soil pH, organic matter, microbial biomass, and enzymatic activities, and aboveground plant population quality in metal-contaminated lands in northern Ontario, Canada. Soil samples were collected from three sites around the City of Greater Sudbury with each pair being composed of a reclaimed (areal-limed) site and an adjacent undisturbed (unlimed) area. Soil physico-chemistry, microbial biomass (assessed by Phospholipid fatty acid analysis) and enzymatic activities were analyzed. Soil pH was higher in limed sites compared to unlimed at recently restored sites (Baby Lake and Wahnapitae) but not at the oldest reclaimed site (HWY 80 N). Organic matter was higher in limed areas compared to the unlimed reference site only at most recently reclaimed site at Baby Lake. Aboveground plant population health was visibly improved in limed sites compared to unlimed areas. Metal concentrations of iron (Fe) and arsenic (As), total microbial biomasses, gram-negative bacterial, fungal, and eukaryotic biomasses were all significantly increased in the limed soils compared to the unlimed samples. The same trend was observed for the activities of three of the enzymes tested, β-N-acetylglucosaminidase (BG), aryl sulfatase (AS), and glycine aminopeptidase (GAP). Interestingly, strong positive correlations between the levels of soil organic matter, microbial biomasses, and NAGase and ALP activities were observed. Although expensive, aerial liming is effective in restoring inaccessible sites impacted by smelting operations where other methods cannot easily be used.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.