Aliona Debisschop , Bram Bogaert , Cristina Muntean , Stefaan C. De Smedt , Koen Raemdonck
{"title":"Beyond chloroquine: Cationic amphiphilic drugs as endosomal escape enhancers for nucleic acid therapeutics","authors":"Aliona Debisschop , Bram Bogaert , Cristina Muntean , Stefaan C. De Smedt , Koen Raemdonck","doi":"10.1016/j.cbpa.2024.102531","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleic acid (NA) therapeutics have the potential to treat or prevent a myriad of diseases but generally require cytosolic delivery to be functional. NA drugs are therefore often encapsulated into delivery systems that mediate effective endocytic uptake by target cells, but unfortunately often display limited endosomal escape efficiency. This review will focus on the potential of repurposing cationic amphiphilic drugs (CADs) to enhance endosomal escape. In general terms, CADs are small molecules with one or more hydrophobic groups and a polar domain containing a basic amine. CADs have been reported to accumulate in acidified intracellular compartments (e.g., endosomes and lysosomes), integrate in cellular membranes and alter endosomal trafficking pathways, ultimately resulting in improved cytosolic release of the endocytosed cargo. As many CADs are widely used drugs, their repurposing offers opportunities for combination therapies with NAs.</div></div>","PeriodicalId":291,"journal":{"name":"Current Opinion in Chemical Biology","volume":"83 ","pages":"Article 102531"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367593124001078","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid (NA) therapeutics have the potential to treat or prevent a myriad of diseases but generally require cytosolic delivery to be functional. NA drugs are therefore often encapsulated into delivery systems that mediate effective endocytic uptake by target cells, but unfortunately often display limited endosomal escape efficiency. This review will focus on the potential of repurposing cationic amphiphilic drugs (CADs) to enhance endosomal escape. In general terms, CADs are small molecules with one or more hydrophobic groups and a polar domain containing a basic amine. CADs have been reported to accumulate in acidified intracellular compartments (e.g., endosomes and lysosomes), integrate in cellular membranes and alter endosomal trafficking pathways, ultimately resulting in improved cytosolic release of the endocytosed cargo. As many CADs are widely used drugs, their repurposing offers opportunities for combination therapies with NAs.
期刊介绍:
COCHBI (Current Opinion in Chemical Biology) is a systematic review journal designed to offer specialists a unique and educational platform. Its goal is to help professionals stay informed about the growing volume of information in the field of Chemical Biology through systematic reviews.