Ling-Ling Zhu, Yan-Hong Wang, Jian-Hua Feng, Quan Zhou
{"title":"Oral Bacterial Lysate OM-85: Advances in Pharmacology and Therapeutics.","authors":"Ling-Ling Zhu, Yan-Hong Wang, Jian-Hua Feng, Quan Zhou","doi":"10.2147/DDDT.S484897","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Bacterial lysates are known for having immunomodulatory properties and have been used mainly for the prevention and treatment of respiratory tract infections (RTIs). However, rigorous studies are needed to confirm the clinical efficacy of bacterial lysates with various bacterial antigen components, preparation methods, administration routes and course of treatment. OM-85, an oral standardized lysate prepared by alkaline lysis of 21 strains from 8 species of common respiratory tract pathogens, is indicated as immunotherapy for prevention of recurrent RTIs and acute infectious exacerbations of chronic bronchitis. OM-85 acts on multiple innate and adaptive immune targets and can restore type 1 helper T (Th1)/Th2 balance. Sporadic studies have shown advances in pharmacology and therapeutics of OM-85, and thus an update review is necessary.</p><p><strong>Methods: </strong>Literature was retrieved by searching PubMed, Web of science, Embase, CNKI, and Full Text Database of Chinese Medical Journals.</p><p><strong>Results: </strong>New roles of OM-85 were discovered in prevention and treatment of lung cancer, pulmonary tuberculosis, SARS-CoV-2 infection, allergic rhinitis, pulmonary fibrosis, atopic dermatitis, and nephrotic syndrome. Pharmacoeconomic values of OM-85 were demonstrated in prophylaxis and treatment of RTIs, chronic obstructive pulmonary disease, asthma, chronic bronchitis, rhinosinusitis and allergic rhinitis. Two consecutive courses of OM-85 (6 or 12 months apart) could prevent recurrent RTIs in children. Maternal OM-85 treatment could offer benefits for offspring. Product-specific response was observed. The efficacy of OM-85 may be associated with patient's characteristics (eg, severity of the disease, age, immune response pattern, malignancy risk stratification).</p><p><strong>Conclusion: </strong>OM-85 can improve effectiveness of standard care for some primary diseases, and carry significant pharmacoeconomic implications. The benefits shown by OM-85 in vitro and in vivo, when extrapolated to humans, are exciting but also require caution. Individualized treatment may need to be considered. It is necessary to compare the efficacy and safety of various bacterial lysate preparations.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"18 ","pages":"4387-4399"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453140/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S484897","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Bacterial lysates are known for having immunomodulatory properties and have been used mainly for the prevention and treatment of respiratory tract infections (RTIs). However, rigorous studies are needed to confirm the clinical efficacy of bacterial lysates with various bacterial antigen components, preparation methods, administration routes and course of treatment. OM-85, an oral standardized lysate prepared by alkaline lysis of 21 strains from 8 species of common respiratory tract pathogens, is indicated as immunotherapy for prevention of recurrent RTIs and acute infectious exacerbations of chronic bronchitis. OM-85 acts on multiple innate and adaptive immune targets and can restore type 1 helper T (Th1)/Th2 balance. Sporadic studies have shown advances in pharmacology and therapeutics of OM-85, and thus an update review is necessary.
Methods: Literature was retrieved by searching PubMed, Web of science, Embase, CNKI, and Full Text Database of Chinese Medical Journals.
Results: New roles of OM-85 were discovered in prevention and treatment of lung cancer, pulmonary tuberculosis, SARS-CoV-2 infection, allergic rhinitis, pulmonary fibrosis, atopic dermatitis, and nephrotic syndrome. Pharmacoeconomic values of OM-85 were demonstrated in prophylaxis and treatment of RTIs, chronic obstructive pulmonary disease, asthma, chronic bronchitis, rhinosinusitis and allergic rhinitis. Two consecutive courses of OM-85 (6 or 12 months apart) could prevent recurrent RTIs in children. Maternal OM-85 treatment could offer benefits for offspring. Product-specific response was observed. The efficacy of OM-85 may be associated with patient's characteristics (eg, severity of the disease, age, immune response pattern, malignancy risk stratification).
Conclusion: OM-85 can improve effectiveness of standard care for some primary diseases, and carry significant pharmacoeconomic implications. The benefits shown by OM-85 in vitro and in vivo, when extrapolated to humans, are exciting but also require caution. Individualized treatment may need to be considered. It is necessary to compare the efficacy and safety of various bacterial lysate preparations.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.