AAV-mouse DNase I sustains long-term DNase I expression in vivo and suppresses breast cancer metastasis

IF 2.5 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY FASEB bioAdvances Pub Date : 2024-08-30 DOI:10.1096/fba.2024-00114
Melanie Herre, Kalyani Vemuri, Jessica Cedervall, Stefanie Nissl, Falk Saupe, Jacob Micallef, Henrik Lindman, Casey A. Maguire, George Tetz, Victor Tetz, Anna-Karin Olsson
{"title":"AAV-mouse DNase I sustains long-term DNase I expression in vivo and suppresses breast cancer metastasis","authors":"Melanie Herre,&nbsp;Kalyani Vemuri,&nbsp;Jessica Cedervall,&nbsp;Stefanie Nissl,&nbsp;Falk Saupe,&nbsp;Jacob Micallef,&nbsp;Henrik Lindman,&nbsp;Casey A. Maguire,&nbsp;George Tetz,&nbsp;Victor Tetz,&nbsp;Anna-Karin Olsson","doi":"10.1096/fba.2024-00114","DOIUrl":null,"url":null,"abstract":"<p>Neutrophil extracellular traps (NETs) have been implicated in the pathology of various inflammatory conditions. In cancer, NETs have been demonstrated to induce systemic inflammation, impair peripheral vessel and organ function and promote metastasis. Here we show that the plasma level of NETs is significantly higher in patients with metastatic breast cancer compared to those with local disease, or those that were considered cured at a 5-year follow-up, confirming NETs as interesting therapeutic targets in metastatic breast cancer. Administration of DNase I is one strategy to eliminate NETs but long-term treatment requires repeated injections and species-specific versions of the enzyme. To enhance administration and therapeutic efficacy, we have developed an adeno-associated virus (AAV) vector system for delivery of murine DNase I and addressed its potential to counteract cancer-associated pathology in the murine MMTV-PyMT model for metastatic mammary carcinoma. The AAV vector is comprised of capsid KP1 and an expression cassette encoding hyperactive murine DNase I (AAV-mDNase I) under the control of a liver-specific promotor. This AAV-mDNase I vector could support elevated expression and serum activity of murine DNase I over at least 8 months. Neutrophil Gelatinase-Associated Lipocalin (NGAL), a biomarker for kidney hypoperfusion that is upregulated in urine from MMTV-PyMT mice, was suppressed in mice receiving AAV-mDNase I compared to an AAV-null control group. Furthermore, the proportion of mice that developed lung metastasis was reduced in the AAV-mDNase I group. Altogether, our data indicate that AAV-mDNase I has the potential to reduce cancer-associated impairment of renal function and development of metastasis. We conclude that AAV-mDNase I could represent a promising therapeutic strategy in metastatic breast cancer.</p>","PeriodicalId":12093,"journal":{"name":"FASEB bioAdvances","volume":"6 10","pages":"454-466"},"PeriodicalIF":2.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11452440/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FASEB bioAdvances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1096/fba.2024-00114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neutrophil extracellular traps (NETs) have been implicated in the pathology of various inflammatory conditions. In cancer, NETs have been demonstrated to induce systemic inflammation, impair peripheral vessel and organ function and promote metastasis. Here we show that the plasma level of NETs is significantly higher in patients with metastatic breast cancer compared to those with local disease, or those that were considered cured at a 5-year follow-up, confirming NETs as interesting therapeutic targets in metastatic breast cancer. Administration of DNase I is one strategy to eliminate NETs but long-term treatment requires repeated injections and species-specific versions of the enzyme. To enhance administration and therapeutic efficacy, we have developed an adeno-associated virus (AAV) vector system for delivery of murine DNase I and addressed its potential to counteract cancer-associated pathology in the murine MMTV-PyMT model for metastatic mammary carcinoma. The AAV vector is comprised of capsid KP1 and an expression cassette encoding hyperactive murine DNase I (AAV-mDNase I) under the control of a liver-specific promotor. This AAV-mDNase I vector could support elevated expression and serum activity of murine DNase I over at least 8 months. Neutrophil Gelatinase-Associated Lipocalin (NGAL), a biomarker for kidney hypoperfusion that is upregulated in urine from MMTV-PyMT mice, was suppressed in mice receiving AAV-mDNase I compared to an AAV-null control group. Furthermore, the proportion of mice that developed lung metastasis was reduced in the AAV-mDNase I group. Altogether, our data indicate that AAV-mDNase I has the potential to reduce cancer-associated impairment of renal function and development of metastasis. We conclude that AAV-mDNase I could represent a promising therapeutic strategy in metastatic breast cancer.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AAV-小鼠 DNase I 可维持体内 DNase I 的长期表达并抑制乳腺癌转移。
中性粒细胞胞外捕获物(NET)与各种炎症的病理过程有关。在癌症中,NETs 被证明可诱发全身性炎症、损害外周血管和器官功能并促进转移。我们在此研究中发现,转移性乳腺癌患者血浆中的 NETs 水平明显高于局部疾病患者或在 5 年随访中被认为治愈的患者,这证实了 NETs 是转移性乳腺癌的有趣治疗靶点。施用 DNase I 是消除 NET 的一种策略,但长期治疗需要反复注射和使用特定物种的酶。为了提高给药和疗效,我们开发了一种用于递送小鼠 DNase I 的腺相关病毒(AAV)载体系统,并研究了它在小鼠 MMTV-PyMT 转移性乳腺癌模型中对抗癌症相关病理的潜力。AAV 载体由囊壳 KP1 和在肝脏特异性启动子控制下编码超活性小鼠 DNase I(AAV-mDNase I)的表达盒组成。这种 AAV-mDNase I 载体可支持小鼠 DNase I 在至少 8 个月内的高表达和血清活性。中性粒细胞明胶酶相关脂质体(NGAL)是肾脏灌注不足的生物标志物,在MMTV-PyMT小鼠的尿液中上调,与AAV无效对照组相比,接受AAV-mDNase I的小鼠中NGAL被抑制。此外,AAV-mDNase I 组小鼠发生肺转移的比例也有所降低。总之,我们的数据表明,AAV-mDNase I 有可能减少癌症相关的肾功能损害和转移的发生。我们的结论是,AAV-mDNase I 可能是治疗转移性乳腺癌的一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FASEB bioAdvances
FASEB bioAdvances Multiple-
CiteScore
5.40
自引率
3.70%
发文量
56
审稿时长
10 weeks
期刊最新文献
Issue Information Medium-chain fatty acid receptor GPR84 deficiency leads to metabolic homeostasis dysfunction in mice fed high-fat diet TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression Everything, everywhere, and all at once: A blueprint for supra-organization of core facilities New role of calcium-binding fluorescent dye alizarin complexone in detecting permeability from articular cartilage to subchondral bone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1