Nini Jia , Yun Meng , Jing Li , Mengyao Cui , Yaqing Li , Dayuan Jiang , Xiaoqin Chu
{"title":"Pharmacodynamic and pharmacokinetic study of Shaoyao Gancao decoction for repairing intestinal barrier damage in ulcerative colitis","authors":"Nini Jia , Yun Meng , Jing Li , Mengyao Cui , Yaqing Li , Dayuan Jiang , Xiaoqin Chu","doi":"10.1016/j.molimm.2024.09.013","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To study the therapeutic effect and mechanism of Shaoyao Gancao Decoction (SGD) on ulcerative colitis (UC) mice based on the perspective of intestinal barrier, and this study provides a new consultation for the clinical application of SGD.</div></div><div><h3>Methods</h3><div>The chemical composition of SGD was characterized by HPLC. The UC mouse model was constructed by 3 % dextran sodium sulfate (DSS), which were randomly divided into the model group (DSS), the positive drug group (5-ASA), the Shaoyao group (SYD), Gancao group (GCD), and the Shaoyao Gancao Decoction group (SGD) at low, medium, and high dosages, respectively. The effects of each drug treatment group on UC were evaluated by the rate of body weight loss, disease activity index (DAI), colon length, spleen index, histopathological evaluations, and the levels of serum inflammatory factors (IL-1β, IL-6, IL-10, IL-21, and TNF-α). The goblet cell was observed by Alcian blue/periodic acid-Schiff (AB/PAS) straining, ELISA was used to detect the content of LPS in serum, and Western blot was used to detect the changes in the expression of tight junction proteins ZO-1, occludin, and the pathway proteins TLR4 and NF-κBp65 in the colonic tissues, to explore the protective effect of SGD on the intestinal barrier of UC mice. The vivo absorption process of the main active ingredients in the SG, SY and GC groups was determined by LC-MS.</div></div><div><h3>Results</h3><div>The contents of albiflorin, paeoniflorin, liquiritin apioside, liquiritin and glycyrrhetinic acid were 6.1227 mg/g, 20.8993 mg/g, 4.0054 mg/g, 3.6140 mg/g and 8.2515 mg/g, respectively. Compared with DSS group, SGD reduced weight loss(P<0.01) and DAI scores(P<0.05), prevented colon shortening(P<0.01), and ameliorated histopathological damage of the colon in UC mice(P<0.01). SGD also protected the intestinal barrier to alleviate UC by significantly reducing serum LPS and inflammatory factor levels, altering the number of goblet cells, promoting tight junction proteins (ZO-1 and occludin) and decreasing the expression of TLR4 and NF-κB in colonic tissues. Pharmacokinetic results showed that there was no significant difference in C<sub>max</sub>, AUC<sub>0-t (μg/L</sub><strong>.</strong><sub>h)</sub> and T<sub>max</sub> of albiflorin and paeoniflorin between the SY and SG groups, the T<sub>max</sub> was within 1 h; the AUC<sub>0-t (μg/L</sub><strong>.</strong><sub>h)</sub> of liquiritin and glycyrrhizic acid were about 1.6 and 1.9 times higher in the SG group compared to the GC group, respectively. The C<sub>max</sub>, T<sub>max</sub> and AUC<sub>0-t (μg/L</sub><strong>.</strong><sub>h)</sub> of glycyrrhizinic acid were significantly reduced to 0.73, 0.68 and 0.68 times of that of the GC group.</div></div><div><h3>Conclusion</h3><div>SGD may have a therapeutic effect on DSS-induced UC mice by repairing the damaged intestinal barrier through the TLR4/NF-κB pathway. The combination of Shaoyao and Gancao increased the absorption of liquiritin and glycyrrhizic acid in vivo. The combination of Shaoyao and Gancao could promote the absorption of Gancao, and that the pairing of the two herbs could have a synergistic effect.</div></div>","PeriodicalId":18938,"journal":{"name":"Molecular immunology","volume":"175 ","pages":"Pages 132-142"},"PeriodicalIF":3.2000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0161589024001822","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To study the therapeutic effect and mechanism of Shaoyao Gancao Decoction (SGD) on ulcerative colitis (UC) mice based on the perspective of intestinal barrier, and this study provides a new consultation for the clinical application of SGD.
Methods
The chemical composition of SGD was characterized by HPLC. The UC mouse model was constructed by 3 % dextran sodium sulfate (DSS), which were randomly divided into the model group (DSS), the positive drug group (5-ASA), the Shaoyao group (SYD), Gancao group (GCD), and the Shaoyao Gancao Decoction group (SGD) at low, medium, and high dosages, respectively. The effects of each drug treatment group on UC were evaluated by the rate of body weight loss, disease activity index (DAI), colon length, spleen index, histopathological evaluations, and the levels of serum inflammatory factors (IL-1β, IL-6, IL-10, IL-21, and TNF-α). The goblet cell was observed by Alcian blue/periodic acid-Schiff (AB/PAS) straining, ELISA was used to detect the content of LPS in serum, and Western blot was used to detect the changes in the expression of tight junction proteins ZO-1, occludin, and the pathway proteins TLR4 and NF-κBp65 in the colonic tissues, to explore the protective effect of SGD on the intestinal barrier of UC mice. The vivo absorption process of the main active ingredients in the SG, SY and GC groups was determined by LC-MS.
Results
The contents of albiflorin, paeoniflorin, liquiritin apioside, liquiritin and glycyrrhetinic acid were 6.1227 mg/g, 20.8993 mg/g, 4.0054 mg/g, 3.6140 mg/g and 8.2515 mg/g, respectively. Compared with DSS group, SGD reduced weight loss(P<0.01) and DAI scores(P<0.05), prevented colon shortening(P<0.01), and ameliorated histopathological damage of the colon in UC mice(P<0.01). SGD also protected the intestinal barrier to alleviate UC by significantly reducing serum LPS and inflammatory factor levels, altering the number of goblet cells, promoting tight junction proteins (ZO-1 and occludin) and decreasing the expression of TLR4 and NF-κB in colonic tissues. Pharmacokinetic results showed that there was no significant difference in Cmax, AUC0-t (μg/L.h) and Tmax of albiflorin and paeoniflorin between the SY and SG groups, the Tmax was within 1 h; the AUC0-t (μg/L.h) of liquiritin and glycyrrhizic acid were about 1.6 and 1.9 times higher in the SG group compared to the GC group, respectively. The Cmax, Tmax and AUC0-t (μg/L.h) of glycyrrhizinic acid were significantly reduced to 0.73, 0.68 and 0.68 times of that of the GC group.
Conclusion
SGD may have a therapeutic effect on DSS-induced UC mice by repairing the damaged intestinal barrier through the TLR4/NF-κB pathway. The combination of Shaoyao and Gancao increased the absorption of liquiritin and glycyrrhizic acid in vivo. The combination of Shaoyao and Gancao could promote the absorption of Gancao, and that the pairing of the two herbs could have a synergistic effect.
期刊介绍:
Molecular Immunology publishes original articles, reviews and commentaries on all areas of immunology, with a particular focus on description of cellular, biochemical or genetic mechanisms underlying immunological phenomena. Studies on all model organisms, from invertebrates to humans, are suitable. Examples include, but are not restricted to:
Infection, autoimmunity, transplantation, immunodeficiencies, inflammation and tumor immunology
Mechanisms of induction, regulation and termination of innate and adaptive immunity
Intercellular communication, cooperation and regulation
Intracellular mechanisms of immunity (endocytosis, protein trafficking, pathogen recognition, antigen presentation, etc)
Mechanisms of action of the cells and molecules of the immune system
Structural analysis
Development of the immune system
Comparative immunology and evolution of the immune system
"Omics" studies and bioinformatics
Vaccines, biotechnology and therapeutic manipulation of the immune system (therapeutic antibodies, cytokines, cellular therapies, etc)
Technical developments.