The Deep Learning-Crop Platform (DL-CRoP): For Species-Level Identification and Nutrient Status of Agricultural Crops.

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2024-10-04 eCollection Date: 2024-01-01 DOI:10.34133/research.0491
Mohammad Urfan, Prakriti Rajput, Palak Mahajan, Shubham Sharma, Haroon Rashid Hakla, Verasis Kour, Bhubneshwari Khajuria, Rehana Chowdhary, Parveen Kumar Lehana, Namrata Karlupia, Pawanesh Abrol, Lam Son Phan Tran, Sikander Pal Choudhary
{"title":"The Deep Learning-Crop Platform (DL-CRoP): For Species-Level Identification and Nutrient Status of Agricultural Crops.","authors":"Mohammad Urfan, Prakriti Rajput, Palak Mahajan, Shubham Sharma, Haroon Rashid Hakla, Verasis Kour, Bhubneshwari Khajuria, Rehana Chowdhary, Parveen Kumar Lehana, Namrata Karlupia, Pawanesh Abrol, Lam Son Phan Tran, Sikander Pal Choudhary","doi":"10.34133/research.0491","DOIUrl":null,"url":null,"abstract":"<p><p>Precise and timely detection of a crop's nutrient requirement will play a crucial role in assuring optimum plant growth and crop yield. The present study introduces a reliable deep learning platform called \"Deep Learning-Crop Platform\" (DL-CRoP) for the identification of some commercially grown plants and their nutrient requirements using leaf, stem, and root images using a convolutional neural network (CNN). It extracts intrinsic feature patterns through hierarchical mapping and provides remarkable outcomes in identification tasks. The DL-CRoP platform is trained on the plant image dataset, namely, Jammu University-Botany Image Database (JU-BID), available at https://github.com/urfanbutt. The findings demonstrate implementation of DL-CRoP-cases A (uses shoot images) and B (uses leaf images) for species identification for <i>Solanum lycopersicum</i> (tomato), <i>Vigna radiata</i> (Vigna), and <i>Zea mays</i> (maize), and cases C (uses leaf images) and D (uses root images) for diagnosis of nitrogen deficiency in maize. The platform achieved a higher rate of accuracy at 80-20, 70-30, and 60-40 splits for all the case studies, compared with established algorithms such as random forest, K-nearest neighbor, support vector machine, AdaBoost, and naïve Bayes. It provides a higher accuracy rate in classification parameters like recall, precision, and F1 score for cases A (90.45%), B (100%), and C (93.21), while a medium-level accuracy of 68.54% for case D. To further improve the accuracy of the platform in case study C, the CNN was modified including a multi-head attention (MHA) block. It resulted in the enhancement of the accuracy of classifying the nitrogen deficiency above 95%. The platform could play an important role in evaluating the health status of crop plants along with a role in precise identification of species. It may be used as a better module for precision crop cultivation under limited nutrient conditions.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"7 ","pages":"0491"},"PeriodicalIF":11.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0491","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Precise and timely detection of a crop's nutrient requirement will play a crucial role in assuring optimum plant growth and crop yield. The present study introduces a reliable deep learning platform called "Deep Learning-Crop Platform" (DL-CRoP) for the identification of some commercially grown plants and their nutrient requirements using leaf, stem, and root images using a convolutional neural network (CNN). It extracts intrinsic feature patterns through hierarchical mapping and provides remarkable outcomes in identification tasks. The DL-CRoP platform is trained on the plant image dataset, namely, Jammu University-Botany Image Database (JU-BID), available at https://github.com/urfanbutt. The findings demonstrate implementation of DL-CRoP-cases A (uses shoot images) and B (uses leaf images) for species identification for Solanum lycopersicum (tomato), Vigna radiata (Vigna), and Zea mays (maize), and cases C (uses leaf images) and D (uses root images) for diagnosis of nitrogen deficiency in maize. The platform achieved a higher rate of accuracy at 80-20, 70-30, and 60-40 splits for all the case studies, compared with established algorithms such as random forest, K-nearest neighbor, support vector machine, AdaBoost, and naïve Bayes. It provides a higher accuracy rate in classification parameters like recall, precision, and F1 score for cases A (90.45%), B (100%), and C (93.21), while a medium-level accuracy of 68.54% for case D. To further improve the accuracy of the platform in case study C, the CNN was modified including a multi-head attention (MHA) block. It resulted in the enhancement of the accuracy of classifying the nitrogen deficiency above 95%. The platform could play an important role in evaluating the health status of crop plants along with a role in precise identification of species. It may be used as a better module for precision crop cultivation under limited nutrient conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习作物平台(DL-CRoP):用于农作物的物种级识别和营养状况。
准确、及时地检测作物的养分需求对确保植物的最佳生长和作物产量起着至关重要的作用。本研究引入了一个可靠的深度学习平台,名为 "深度学习-作物平台"(DL-CRoP),利用卷积神经网络(CNN),通过叶片、茎和根的图像识别一些商业化种植的植物及其养分需求。它通过分层映射提取内在特征模式,在识别任务中取得了显著效果。DL-CRoP 平台在查谟大学植物学图像数据库(JU-BID)植物图像数据集上进行了训练,该数据集可在 https://github.com/urfanbutt 网站上查阅。研究结果展示了 DL-CRoP 的实施情况:案例 A(使用嫩枝图像)和案例 B(使用叶片图像)用于番茄(Solanum lycopersicum)、Vigna radiata(Vigna)和玉米(Zea mays)的物种鉴定;案例 C(使用叶片图像)和案例 D(使用根部图像)用于玉米缺氮的诊断。与随机森林、K-近邻、支持向量机、AdaBoost 和天真贝叶斯等成熟算法相比,该平台在所有案例研究中的准确率分别为 80-20、70-30 和 60-40。在案例 A(90.45%)、案例 B(100%)和案例 C(93.21%)中,该平台在召回率、精确度和 F1 分数等分类参数方面提供了更高的准确率,而案例 D 的准确率为 68.54%,处于中等水平。结果,缺氮分类的准确率提高到 95% 以上。该平台可在评估作物植物的健康状况方面发挥重要作用,同时还可在精确识别物种方面发挥作用。在有限的养分条件下,它可以作为作物精准栽培的一个更好的模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Cellular Characterization and Interspecies Evolution of the Tree Shrew Retina across Postnatal Lifespan. A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting. Single Phototrophic Bacterium-Mediated Iron Cycling in Aquatic Environments. The Inhibition of Interfacial Ice Formation and Stress Accumulation with Zwitterionic Betaine and Trehalose for High-Efficiency Skin Cryopreservation. Unveiling the Power of Gut Microbiome in Predicting Neoadjuvant Immunochemotherapy Responses in Esophageal Squamous Cell Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1