Deep Learning-Based Detection of Impacted Teeth on Panoramic Radiographs.

IF 2.3 Q3 ENGINEERING, BIOMEDICAL Biomedical Engineering and Computational Biology Pub Date : 2024-10-05 eCollection Date: 2024-01-01 DOI:10.1177/11795972241288319
He Zhicheng, Wang Yipeng, Li Xiao
{"title":"Deep Learning-Based Detection of Impacted Teeth on Panoramic Radiographs.","authors":"He Zhicheng, Wang Yipeng, Li Xiao","doi":"10.1177/11795972241288319","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim is to detect impacted teeth in panoramic radiology by refining the pretrained MedSAM model.</p><p><strong>Study design: </strong>Impacted teeth are dental issues that can cause complications and are diagnosed via radiographs. We modified SAM model for individual tooth segmentation using 1016 X-ray images. The dataset was split into training, validation, and testing sets, with a ratio of 16:3:1. We enhanced the SAM model to automatically detect impacted teeth by focusing on the tooth's center for more accurate results.</p><p><strong>Results: </strong>With 200 epochs, batch size equals to 1, and a learning rate of 0.001, random images trained the model. Results on the test set showcased performance up to an accuracy of 86.73%, F1-score of 0.5350, and IoU of 0.3652 on SAM-related models.</p><p><strong>Conclusion: </strong>This study fine-tunes MedSAM for impacted tooth segmentation in X-ray images, aiding dental diagnoses. Further improvements on model accuracy and selection are essential for enhancing dental practitioners' diagnostic capabilities.</p>","PeriodicalId":42484,"journal":{"name":"Biomedical Engineering and Computational Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11456186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11795972241288319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim is to detect impacted teeth in panoramic radiology by refining the pretrained MedSAM model.

Study design: Impacted teeth are dental issues that can cause complications and are diagnosed via radiographs. We modified SAM model for individual tooth segmentation using 1016 X-ray images. The dataset was split into training, validation, and testing sets, with a ratio of 16:3:1. We enhanced the SAM model to automatically detect impacted teeth by focusing on the tooth's center for more accurate results.

Results: With 200 epochs, batch size equals to 1, and a learning rate of 0.001, random images trained the model. Results on the test set showcased performance up to an accuracy of 86.73%, F1-score of 0.5350, and IoU of 0.3652 on SAM-related models.

Conclusion: This study fine-tunes MedSAM for impacted tooth segmentation in X-ray images, aiding dental diagnoses. Further improvements on model accuracy and selection are essential for enhancing dental practitioners' diagnostic capabilities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的全景 X 光片牙齿撞击检测。
研究目的研究设计:研究设计:撞击牙是一种可引起并发症的牙科问题,可通过 X 光片进行诊断。我们利用 1016 张 X 光图像修改了用于单个牙齿分割的 SAM 模型。数据集分为训练集、验证集和测试集,比例为 16:3:1。我们对 SAM 模型进行了改进,通过聚焦牙齿中心来自动检测撞击牙齿,从而获得更准确的结果:在 200 个历元、批量大小等于 1 和学习率为 0.001 的条件下,随机图像对模型进行了训练。测试集的结果显示,SAM 相关模型的准确率高达 86.73%,F1 分数为 0.5350,IoU 为 0.3652:本研究对 MedSAM 进行了微调,用于 X 射线图像中的撞击牙分割,为牙科诊断提供了帮助。要提高牙科医生的诊断能力,进一步提高模型的准确性和选择至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
1
审稿时长
8 weeks
期刊最新文献
A Physical Framework to Study the Effect of Magnetic Fields on the Spike-Time Coding. On Mechanical Behavior and Characterization of Soft Tissues. Construction of Prognostic Prediction Models for Colorectal Cancer Based on Ferroptosis-Related Genes: A Multi-Dataset and Multi-Model Analysis. Commentary on "Large-Scale Pancreatic Cancer Detection via Non-Contrast CT and Deep Learning". Correspondence to "Conceptualizing Patient as an Organization with the Adoption of Digital Health".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1