Screening chronic kidney disease through deep learning utilizing ultra-wide-field fundus images

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-10-07 DOI:10.1038/s41746-024-01271-w
Xinyu Zhao, Xingwang Gu, Lihui Meng, Yongwei Chen, Qing Zhao, Shiyu Cheng, Wenfei Zhang, Tiantian Cheng, Chuting Wang, Zhengming Shi, Shengyin Jiao, Changlong Jiang, Guofang Jiao, Da Teng, Xiaolei Sun, Bilei Zhang, Yakun Li, Huiqin Lu, Changzheng Chen, Hao Zhang, Ling Yuan, Chang Su, Han Zhang, Song Xia, Anyi Liang, Mengda Li, Dan Zhu, Meirong Xue, Dawei Sun, Qiuming Li, Ziwu Zhang, Donglei Zhang, Hongbin Lv, Rishet Ahmat, Zilong Wang, Charumathi Sabanayagam, Xiaowei Ding, Tien Yin Wong, Youxin Chen
{"title":"Screening chronic kidney disease through deep learning utilizing ultra-wide-field fundus images","authors":"Xinyu Zhao, Xingwang Gu, Lihui Meng, Yongwei Chen, Qing Zhao, Shiyu Cheng, Wenfei Zhang, Tiantian Cheng, Chuting Wang, Zhengming Shi, Shengyin Jiao, Changlong Jiang, Guofang Jiao, Da Teng, Xiaolei Sun, Bilei Zhang, Yakun Li, Huiqin Lu, Changzheng Chen, Hao Zhang, Ling Yuan, Chang Su, Han Zhang, Song Xia, Anyi Liang, Mengda Li, Dan Zhu, Meirong Xue, Dawei Sun, Qiuming Li, Ziwu Zhang, Donglei Zhang, Hongbin Lv, Rishet Ahmat, Zilong Wang, Charumathi Sabanayagam, Xiaowei Ding, Tien Yin Wong, Youxin Chen","doi":"10.1038/s41746-024-01271-w","DOIUrl":null,"url":null,"abstract":"To address challenges in screening for chronic kidney disease (CKD), we devised a deep learning-based CKD screening model named UWF-CKDS. It utilizes ultra-wide-field (UWF) fundus images to predict the presence of CKD. We validated the model with data from 23 tertiary hospitals across China. Retinal vessels and retinal microvascular parameters (RMPs) were extracted to enhance model interpretability, which revealed a significant correlation between renal function and RMPs. UWF-CKDS, utilizing UWF images, RMPs, and relevant medical history, can accurately determine CKD status. Importantly, UWF-CKDS exhibited superior performance compared to CTR-CKDS, a model developed using the central region (CTR) cropped from UWF images, underscoring the contribution of the peripheral retina in predicting renal function. The study presents UWF-CKDS as a highly implementable method for large-scale and accurate CKD screening at the population level.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-11"},"PeriodicalIF":12.4000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01271-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01271-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

To address challenges in screening for chronic kidney disease (CKD), we devised a deep learning-based CKD screening model named UWF-CKDS. It utilizes ultra-wide-field (UWF) fundus images to predict the presence of CKD. We validated the model with data from 23 tertiary hospitals across China. Retinal vessels and retinal microvascular parameters (RMPs) were extracted to enhance model interpretability, which revealed a significant correlation between renal function and RMPs. UWF-CKDS, utilizing UWF images, RMPs, and relevant medical history, can accurately determine CKD status. Importantly, UWF-CKDS exhibited superior performance compared to CTR-CKDS, a model developed using the central region (CTR) cropped from UWF images, underscoring the contribution of the peripheral retina in predicting renal function. The study presents UWF-CKDS as a highly implementable method for large-scale and accurate CKD screening at the population level.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过深度学习利用超宽视场眼底图像筛查慢性肾病
为了应对慢性肾脏病(CKD)筛查方面的挑战,我们设计了一种基于深度学习的慢性肾脏病筛查模型,名为 UWF-CKDS。它利用超宽视场(UWF)眼底图像来预测是否存在慢性肾脏病。我们利用来自全国 23 家三甲医院的数据对该模型进行了验证。为了提高模型的可解释性,我们提取了视网膜血管和视网膜微血管参数(RMPs),结果显示肾功能和 RMPs 之间存在显著相关性。利用 UWF 图像、RMPs 和相关病史,UWF-CKDS 可以准确判断 CKD 状态。重要的是,UWF-CKDS 的性能优于 CTR-CKDS,后者是利用从 UWF 图像中剪切出的中心区域(CTR)开发的模型,强调了外周视网膜在预测肾功能方面的贡献。这项研究表明,UWF-CKDS 是一种高度可实施的方法,可用于大规模、准确的人群慢性肾脏病筛查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
Human AI collaboration for unsupervised categorization of live surgical feedback Probabilistic medical predictions of large language models A prospective comparison of two computer aided detection systems with different false positive rates in colonoscopy AI technology to support adaptive functioning in neurodevelopmental conditions in everyday environments: a systematic review Mitigation of AI adoption bias through an improved autonomous AI system for diabetic retinal disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1