An accuracy assessment of the surface reflectance product from the EMIT imaging spectrometer

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-10-07 DOI:10.1016/j.rse.2024.114450
Red Willow Coleman , David R. Thompson , Philip G. Brodrick , Eyal Ben Dor , Evan Cox , Carlos Pérez García-Pando , Todd Hoefen , Raymond F. Kokaly , John M. Meyer , Francisco Ochoa , Gregory S. Okin , Daniela Heller Pearlshtien , Gregg Swayze , Robert O. Green
{"title":"An accuracy assessment of the surface reflectance product from the EMIT imaging spectrometer","authors":"Red Willow Coleman ,&nbsp;David R. Thompson ,&nbsp;Philip G. Brodrick ,&nbsp;Eyal Ben Dor ,&nbsp;Evan Cox ,&nbsp;Carlos Pérez García-Pando ,&nbsp;Todd Hoefen ,&nbsp;Raymond F. Kokaly ,&nbsp;John M. Meyer ,&nbsp;Francisco Ochoa ,&nbsp;Gregory S. Okin ,&nbsp;Daniela Heller Pearlshtien ,&nbsp;Gregg Swayze ,&nbsp;Robert O. Green","doi":"10.1016/j.rse.2024.114450","DOIUrl":null,"url":null,"abstract":"<div><div>The Earth surface Mineral dust source InvesTigation (EMIT) is an imaging spectrometer launched to the International Space Station in July 2022 to measure the mineral composition of Earth’s dust-producing regions. We present a systematic accuracy assessment of the EMIT surface reflectance product in two parts. First, we characterize the surface reflectance product’s overall performance using multiple independent vicarious calibration field experiments with hand-held and automated field spectrometers. We find that the EMIT surface reflectance product has a standard error of <span><math><mrow><mo>±</mo><mn>1</mn><mo>.</mo><mn>0</mn></mrow></math></span>% in absolute reflectance units for temporally coincident observations. Discrepancies rise to <span><math><mrow><mo>±</mo><mn>2</mn><mo>.</mo><mn>7</mn></mrow></math></span> % for spectra acquired at different dates and times of day, which we attribute mainly to changes in solar geometry. Second, we develop an error budget that explains the differences between EMIT and in-situ field spectrometer data. We find that uncertainties in spatial footprints, field spectroscopy, and the EMIT-reported measurement were sufficient to explain discrepancies in most cases. Our approach did not detect any systematic calibration or reflectance errors in the timespan considered. Together, these findings demonstrate that a space-based imaging spectrometer can acquire high-quality spectra across a wide range of observational and atmospheric conditions.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"315 ","pages":"Article 114450"},"PeriodicalIF":11.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724004760","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Earth surface Mineral dust source InvesTigation (EMIT) is an imaging spectrometer launched to the International Space Station in July 2022 to measure the mineral composition of Earth’s dust-producing regions. We present a systematic accuracy assessment of the EMIT surface reflectance product in two parts. First, we characterize the surface reflectance product’s overall performance using multiple independent vicarious calibration field experiments with hand-held and automated field spectrometers. We find that the EMIT surface reflectance product has a standard error of ±1.0% in absolute reflectance units for temporally coincident observations. Discrepancies rise to ±2.7 % for spectra acquired at different dates and times of day, which we attribute mainly to changes in solar geometry. Second, we develop an error budget that explains the differences between EMIT and in-situ field spectrometer data. We find that uncertainties in spatial footprints, field spectroscopy, and the EMIT-reported measurement were sufficient to explain discrepancies in most cases. Our approach did not detect any systematic calibration or reflectance errors in the timespan considered. Together, these findings demonstrate that a space-based imaging spectrometer can acquire high-quality spectra across a wide range of observational and atmospheric conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EMIT 成像光谱仪表面反射率产品的精度评估
地球表面矿物尘源探测(EMIT)是 2022 年 7 月发射到国际空间站的成像光谱仪,用于测量地球产尘区的矿物成分。我们分两部分对 EMIT 表面反射率产品进行了系统的精度评估。首先,我们使用手持式和自动现场光谱仪进行了多个独立的替代校准现场实验,从而确定了表面反射率产品的整体性能。我们发现,对于时间上吻合的观测结果,EMIT 表面反射率产品的绝对反射率单位标准误差为 ±1.0±1.0%。在不同日期和时间获取的光谱,其差异上升到±2.7±2.7%,我们将其主要归因于太阳几何形状的变化。其次,我们制定了一个误差预算来解释 EMIT 和现场光谱仪数据之间的差异。我们发现,在大多数情况下,空间足迹、现场光谱仪和 EMIT 报告的测量值的不确定性足以解释差异。在所考虑的时间跨度内,我们的方法没有发现任何系统校准或反射误差。这些发现共同表明,天基成像光谱仪可以在广泛的观测和大气条件下获取高质量的光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Two-decade surface ozone (O3) pollution in China: Enhanced fine-scale estimations and environmental health implications Assessing lead fraction derived from passive microwave images and improving estimates at pixel-wise level Estimating anthropogenic CO2 emissions from China's Yangtze River Delta using OCO-2 observations and WRF-Chem simulations A dual-branch network for crop-type mapping of scattered small agricultural fields in time series remote sensing images From theory to hydrological practice: Leveraging CYGNSS data over seven years for advanced soil moisture monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1