Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G. Pacheco, Rodrigo S. Couto
{"title":"Early-Exit Deep Neural Network - A Comprehensive Survey","authors":"Haseena Rahmath P, Vishal Srivastava, Kuldeep Chaurasia, Roberto G. Pacheco, Rodrigo S. Couto","doi":"10.1145/3698767","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) typically have a single exit point that makes predictions by running the entire stack of neural layers. Since not all inputs require the same amount of computation to reach a confident prediction, recent research has focused on incorporating multiple ”exits” into the conventional DNN architecture. Early-exit DNNs are multi-exit neural networks that attach many side branches to the conventional DNN, enabling inference to stop early at intermediate points. This approach offers several advantages, including speeding up the inference process, mitigating the vanishing gradients problems, reducing overfitting and overthinking tendencies. It also supports DNN partitioning across devices and is ideal for multi-tier computation platforms such as edge computing. This paper decomposes the early-exit DNN architecture and reviews the recent advances in the field. The study explores its benefits, designs, training strategies, and adaptive inference mechanisms. Various design challenges, application scenarios, and future directions are also extensively discussed.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"225 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3698767","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Deep neural networks (DNNs) typically have a single exit point that makes predictions by running the entire stack of neural layers. Since not all inputs require the same amount of computation to reach a confident prediction, recent research has focused on incorporating multiple ”exits” into the conventional DNN architecture. Early-exit DNNs are multi-exit neural networks that attach many side branches to the conventional DNN, enabling inference to stop early at intermediate points. This approach offers several advantages, including speeding up the inference process, mitigating the vanishing gradients problems, reducing overfitting and overthinking tendencies. It also supports DNN partitioning across devices and is ideal for multi-tier computation platforms such as edge computing. This paper decomposes the early-exit DNN architecture and reviews the recent advances in the field. The study explores its benefits, designs, training strategies, and adaptive inference mechanisms. Various design challenges, application scenarios, and future directions are also extensively discussed.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.