Algorithms for Non-Negative Matrix Factorization on Noisy Data With Negative Values

IF 4.6 2区 工程技术 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal Processing Pub Date : 2024-10-07 DOI:10.1109/TSP.2024.3474530
Dylan Green;Stephen Bailey
{"title":"Algorithms for Non-Negative Matrix Factorization on Noisy Data With Negative Values","authors":"Dylan Green;Stephen Bailey","doi":"10.1109/TSP.2024.3474530","DOIUrl":null,"url":null,"abstract":"Non-negative matrix factorization (NMF) is a dimensionality reduction technique that has shown promise for analyzing noisy data, especially astronomical data. For these datasets, the observed data may contain negative values due to noise even when the true underlying physical signal is strictly positive. Prior NMF work has not treated negative data in a statistically consistent manner, which becomes problematic for low signal-to-noise data with many negative values. In this paper we present two algorithms, Shift-NMF and Nearly-NMF, that can handle both the noisiness of the input data and also any introduced negativity. Both of these algorithms use the negative data space without clipping or masking and recover non-negative signals without any introduced positive offset that occurs when clipping or masking negative data. We demonstrate this numerically on both simple and more realistic examples, and prove that both algorithms have monotonically decreasing update rules.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"5187-5197"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10706600","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10706600/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Non-negative matrix factorization (NMF) is a dimensionality reduction technique that has shown promise for analyzing noisy data, especially astronomical data. For these datasets, the observed data may contain negative values due to noise even when the true underlying physical signal is strictly positive. Prior NMF work has not treated negative data in a statistically consistent manner, which becomes problematic for low signal-to-noise data with many negative values. In this paper we present two algorithms, Shift-NMF and Nearly-NMF, that can handle both the noisiness of the input data and also any introduced negativity. Both of these algorithms use the negative data space without clipping or masking and recover non-negative signals without any introduced positive offset that occurs when clipping or masking negative data. We demonstrate this numerically on both simple and more realistic examples, and prove that both algorithms have monotonically decreasing update rules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带负值的噪声数据上的非负矩阵因式分解算法
非负矩阵因式分解(NMF)是一种降维技术,在分析噪声数据(尤其是天文数据)方面大有可为。对于这些数据集,即使真正的基本物理信号是严格意义上的正值,观测数据也可能因噪声而包含负值。之前的 NMF 工作并没有以统计一致的方式处理负值数据,这就给含有大量负值的低信噪比数据带来了问题。在本文中,我们提出了 Shift-NMF 和 Nearly-NMF 两种算法,它们既能处理输入数据的噪声,也能处理任何引入的负值。这两种算法都使用负数据空间,无需剪切或屏蔽,并且在恢复非负信号时不会出现剪切或屏蔽负数据时引入的正偏移。我们在简单和更现实的例子中用数字演示了这一点,并证明这两种算法的更新规则都是单调递减的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Signal Processing
IEEE Transactions on Signal Processing 工程技术-工程:电子与电气
CiteScore
11.20
自引率
9.30%
发文量
310
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.
期刊最新文献
Low-Tubal-Rank Tensor Recovery via Factorized Gradient Descent Data-Driven Quickest Change Detection in (Hidden) Markov Models Simplicial Vector Autoregressive Models A Directional Generation Algorithm for SAR Image based on Azimuth-Guided Statistical Generative Adversarial Network Structured Directional Pruning via Perturbation Orthogonal Projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1