Rasmus Palm, Angélica María Baena-Moncada and Josué M. Gonçalves
{"title":"From medium- to high-entropy hydroxides for hybrid supercapacitors: a review","authors":"Rasmus Palm, Angélica María Baena-Moncada and Josué M. Gonçalves","doi":"10.1039/D4TA05625F","DOIUrl":null,"url":null,"abstract":"<p >The quest for devices with significantly higher power and energy density has made hybrid supercapacitors a promising alternative for energy storage. These devices have gained traction by combining the exceptional power density of supercapacitive materials with the high energy density of battery-type materials in a single system. Among promising battery-type materials, medium-entropy and high-entropy hydroxides (ME-hydroxides/HE-hydroxides) have attracted growing research interest due to their unique structural characteristics and their potential for tailoring functional properties. This new class of materials represents a significant departure from the traditional concept of low-entropy materials, paving the way for innovative advancements in energy storage technologies. Considering the significant advancements in the past five years, this review focuses on the recently developed ME- and HE-hydroxides for hybrid supercapacitors. It covers their synthesis methods, effective strategies, promising trends, and performance as positive electrode materials. Additionally, the review addresses the inappropriate use of the term “high-entropy”. Finally, the challenges and prospects in designing ME- and HE-hydroxides for hybrid supercapacitors are discussed, offering guidance for the development of new materials to advance future energy storage technologies.</p>","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":" 43","pages":" 29402-29431"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ta/d4ta05625f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The quest for devices with significantly higher power and energy density has made hybrid supercapacitors a promising alternative for energy storage. These devices have gained traction by combining the exceptional power density of supercapacitive materials with the high energy density of battery-type materials in a single system. Among promising battery-type materials, medium-entropy and high-entropy hydroxides (ME-hydroxides/HE-hydroxides) have attracted growing research interest due to their unique structural characteristics and their potential for tailoring functional properties. This new class of materials represents a significant departure from the traditional concept of low-entropy materials, paving the way for innovative advancements in energy storage technologies. Considering the significant advancements in the past five years, this review focuses on the recently developed ME- and HE-hydroxides for hybrid supercapacitors. It covers their synthesis methods, effective strategies, promising trends, and performance as positive electrode materials. Additionally, the review addresses the inappropriate use of the term “high-entropy”. Finally, the challenges and prospects in designing ME- and HE-hydroxides for hybrid supercapacitors are discussed, offering guidance for the development of new materials to advance future energy storage technologies.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.