Heterobimetallic NiFe Complex for Photocatalytic CO2 Reduction: United Efforts of NiFe Dual Sites

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2024-10-08 DOI:10.1021/jacs.4c08510
Yao Xiao, Hong-Tao Zhang, Ming-Tian Zhang
{"title":"Heterobimetallic NiFe Complex for Photocatalytic CO2 Reduction: United Efforts of NiFe Dual Sites","authors":"Yao Xiao, Hong-Tao Zhang, Ming-Tian Zhang","doi":"10.1021/jacs.4c08510","DOIUrl":null,"url":null,"abstract":"Catalytic CO<sub>2</sub> reduction poses a significant challenge for the conversion of CO<sub>2</sub> into chemicals and fuels. Ni–Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO<sub>2</sub> and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO<sub>2</sub> reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO<sub>2</sub> reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO<sub>2</sub> to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, <b>NiFe</b> achieves dual-site activation of CO<sub>2</sub> through a pivotal intermediate, Ni<sup>II</sup>(μ-CO<sub>2</sub><sup>2–</sup>-κC:κO)Fe<sup>II</sup>, where the Lewis acidity of the Fe<sup>II</sup> site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO<sub>2</sub> to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO<sub>2</sub> reduction catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":null,"pages":null},"PeriodicalIF":14.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c08510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Catalytic CO2 reduction poses a significant challenge for the conversion of CO2 into chemicals and fuels. Ni–Fe carbon monoxide dehydrogenase ([NiFe]-CODH) effectively mediates the reversible conversion of CO2 and CO at a nearly thermodynamic equilibrium potential, highlighting the heterobimetallic cooperation for the design of CO2 reduction catalysts. However, numerous NiFe biomimetic model complexes have realized little success in CO2 reduction catalysis, which underscores the crucial role of precise bimetallic configuration and functionality. Herein, we presented a heterobimetallic NiFe complex for the photocatalytic reduction of CO2 to CO, demonstrating significantly enhanced catalytic performance compared to the homonuclear NiNi catalyst. Photocatalytic and mechanistic investigations revealed that with the assistance of a redox-active phenanthroline ligand, NiFe achieves dual-site activation of CO2 through a pivotal intermediate, NiII(μ-CO22–-κC:κO)FeII, where the Lewis acidity of the FeII site plays an important role, as corroborated in the homonuclear FeFe system. This study introduces the first heteronuclear NiFe molecular catalyst capable of efficiently catalyzing the reduction of CO2 to CO, deepening insights into heterobimetallic cooperation and offering a novel strategy for designing highly active and selective CO2 reduction catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于光催化二氧化碳还原的异重金属镍铁合金复合物:镍铁双基的联合努力
催化二氧化碳还原是将二氧化碳转化为化学品和燃料的重大挑战。镍铁合金一氧化碳脱氢酶([NiFe]-CODH)能在接近热力学平衡电位的条件下有效介导二氧化碳和一氧化碳的可逆转化,凸显了设计二氧化碳还原催化剂的异种双金属合作关系。然而,众多镍铁合金仿生模型复合物在二氧化碳还原催化中却鲜有成功,这凸显了精确的双金属构型和功能的关键作用。在本文中,我们提出了一种用于光催化将 CO2 还原成 CO 的异双金属 NiFe 复合物,与同核 NiNi 催化剂相比,其催化性能显著增强。光催化和机理研究发现,在具有氧化还原活性的菲罗啉配体的帮助下,NiFe 通过一个关键的中间体 NiII(μ-CO22--κC:κO)FeII 实现了 CO2 的双位点活化,其中 FeII 位点的路易斯酸性发挥了重要作用,这在同核 FeFe 体系中得到了证实。这项研究首次提出了能够高效催化 CO2 还原成 CO 的异核 NiFe 分子催化剂,加深了对异金属合作的认识,并为设计高活性和高选择性 CO2 还原催化剂提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Amorphous AlOCl Compounds Enabling Nanocrystalline LiCl with Abnormally High Ionic Conductivity Entropy-Derived Synthesis of the CuPd Sub-1nm Alloy for CO2-to-acetate Electroreduction Cross-Coupling of NHC/CAAC-Based Carbodicarbene: Synthesis of Electron-Deficient Diradicaloids Boosting Energy-Storage in High-Entropy Pb-Free Relaxors Engineered by Local Lattice Distortion Exceptional Field Effect and Negative Differential Conductance in Spiro-Conjugated Single-Molecule Junctions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1