A frequency-dependent model for bone remodeling using a micromorphic porous medium subjected to harmonic mechanical loading

IF 1.9 4区 工程技术 Q3 MECHANICS Continuum Mechanics and Thermodynamics Pub Date : 2024-10-09 DOI:10.1007/s00161-024-01326-z
Yanfei Lu
{"title":"A frequency-dependent model for bone remodeling using a micromorphic porous medium subjected to harmonic mechanical loading","authors":"Yanfei Lu","doi":"10.1007/s00161-024-01326-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the bone tissue was modeled as a linear viscoelastic material saturated with interstitial fluid. We considered a specific case of harmonic loading and related the mechanical stimuli to the loading frequency. In this way, we could include the inertial effect in the model while not having to deal with the perturbation during each loading period. Two types of mechanical signals were considered: strain energy and dissipation energy. A parametric study revealed the dependency of the two signals on loading frequency and material property. The evolution of the apparent mass density supported the parametric study’s findings. Under the three different frequency loadings, the strain energy-stimulated samples experienced identical remodeling scenarios. The samples stimulated with dissipation energy, on the other hand, exhibited a strong frequency dependence. An additional study was performed to investigate the effect of long-term variations in the loading frequency on the remodeling process. This demonstrated the model’s capabilities in designing and evaluating load regimes for rehabilitation following a bone injury or bone reconstruction.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 6","pages":"1741 - 1753"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01326-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01326-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the bone tissue was modeled as a linear viscoelastic material saturated with interstitial fluid. We considered a specific case of harmonic loading and related the mechanical stimuli to the loading frequency. In this way, we could include the inertial effect in the model while not having to deal with the perturbation during each loading period. Two types of mechanical signals were considered: strain energy and dissipation energy. A parametric study revealed the dependency of the two signals on loading frequency and material property. The evolution of the apparent mass density supported the parametric study’s findings. Under the three different frequency loadings, the strain energy-stimulated samples experienced identical remodeling scenarios. The samples stimulated with dissipation energy, on the other hand, exhibited a strong frequency dependence. An additional study was performed to investigate the effect of long-term variations in the loading frequency on the remodeling process. This demonstrated the model’s capabilities in designing and evaluating load regimes for rehabilitation following a bone injury or bone reconstruction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微形多孔介质承受谐波机械载荷的骨重塑频率相关模型
在本文中,骨组织被建模为饱和间质的线性粘弹性材料。我们考虑了谐波加载的特定情况,并将机械刺激与加载频率相关联。这样,我们就可以在模型中包含惯性效应,同时不必处理每个加载周期内的扰动。我们考虑了两种类型的机械信号:应变能和耗散能。参数研究显示了这两种信号对加载频率和材料特性的依赖性。表观质量密度的变化支持了参数研究的结论。在三种不同频率的加载下,应变能刺激的样品经历了相同的重塑情况。而使用耗散能刺激的样品则表现出很强的频率依赖性。另外还进行了一项研究,探讨加载频率的长期变化对重塑过程的影响。这证明了该模型在设计和评估骨损伤或骨重建后的康复负荷机制方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
15.40%
发文量
92
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena. Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.
期刊最新文献
Study of two-dimensional nonlinear coupled time-space fractional order reaction advection diffusion equations using shifted Legendre-Gauss-Lobatto collocation method Towards the Galerkin approximation of tetraskelion metamaterials An analytical model for debonding of composite cantilever beams under point loads Predictive models for bone remodeling during orthodontic tooth movement: a scoping review on the “biological metamaterial” periodontal ligament interface Mixed FEM implementation of three-point bending of the beam with an edge crack within strain gradient elasticity theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1