Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters via a "Reserve-Release" Crystallization Strategy.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-10-09 DOI:10.1002/anie.202417627
Xiangyu Miao, Rui Han, Juan Tian, Yuanchi Ma, Alejandro J Müller, Zhibo Li
{"title":"Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters via a \"Reserve-Release\" Crystallization Strategy.","authors":"Xiangyu Miao, Rui Han, Juan Tian, Yuanchi Ma, Alejandro J Müller, Zhibo Li","doi":"10.1002/anie.202417627","DOIUrl":null,"url":null,"abstract":"<p><p>Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity (\"reserve\") albeit with vast potential for strain-induced crystallization (\"release\"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the \"reserve-release\" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417627","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity ("reserve") albeit with vast potential for strain-induced crystallization ("release"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the "reserve-release" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 "储备-释放 "结晶策略从多嵌段共聚物中制造超强、坚韧和可生物降解的热塑性弹性体。
同时获得高强度和韧性一直是设计热塑性弹性体,尤其是可生物降解弹性体的重大挑战。在此背景下,我们提出了一类基于多嵌段共聚聚酯的可生物降解弹性体,尽管化学合成和样品处理过程非常简便,但这种弹性体仍能提供非凡的强度、韧性和低应变回弹性。由于加入了半结晶软嵌段并明智地选择了嵌段周期,这些热塑性材料的静态结晶度("储备")很低,但应变诱导结晶("释放")的潜力巨大,从而显著提高了它们的极限强度和能量耗散能力。此外,这种材料的机械响应范围很广,从增强弹性体到形状记忆材料,再到增韧热塑性塑料,都可以通过正交变化段长度和比率来实现。这项工作和本文中的 "储备-释放 "结晶策略凸显了双结晶多嵌段链结构是调和热塑性弹性体强度-韧性权衡的潜在途径,并有可能扩展到其他可生物降解构建模块,以提供具有不同机械性能的功能材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Reconfiguring the Hydrogen Networks of Aqueous Electrolyte to Stabilize Iron Hexacyanoferrate for High-Voltage pH-Decoupled Cell. In Situ Transformation of an Amorphous Supramolecular Coating to a Hydrogen-Bonded Organic Framework Membrane to Trigger Selective Gas Permeation. Multiphoton-Driven Photocatalytic Defluorination of Persistent Perfluoroalkyl Substances and Polymers by Visible Light. Phosphetene-Based Polyaromatics: Structure-Property Relationships and Chiroptical Tuning. Highly Selective Photocatalytic Synthesis of Acetic Acid at 0-25 °C.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1