25SrRNA Methyltransferase CgBMT5 From Candida glycerinogenes Improves Tolerance and Fermentation Performance of Saccharomyces cerevisiae and Yarrowia lipolytica From Undetoxified Cellulose Hydrolysate
Xinyao Lu, Xiaoqing Hao, Wen Lv, Bin Zhuge, Hong Zong
{"title":"25SrRNA Methyltransferase CgBMT5 From Candida glycerinogenes Improves Tolerance and Fermentation Performance of Saccharomyces cerevisiae and Yarrowia lipolytica From Undetoxified Cellulose Hydrolysate","authors":"Xinyao Lu, Xiaoqing Hao, Wen Lv, Bin Zhuge, Hong Zong","doi":"10.1002/biot.202400397","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The hydrolysis of cellulose generates inhibitors like acetate, suppressing fermentation performance. Here, 25SrRNA methyltransferase CgBMT5 from stress-tolerant yeast <i>Candida glycerinogenes</i> was used as an anti-stress gene element in <i>Saccharomyces cerevisiae</i> and <i>Yarrowia lipolytica</i>. Expression of <i>CgBMT5</i> in <i>S. cerevisiae</i> increased cell tolerance to acetate, high osmolarity, and heat stress and rescued the delay in cell growth under acetate stress. Ethanol productivity was improved from 0.52 g·(L/h) to 0.69 g·(L/h). CgBMT5 improved GFP expression. The transcription factor ARG81 binds to the promoter of <i>CgBMT5</i>. CgBMT5 upregulated <i>HOG1</i>, <i>GPD1</i>, <i>HAA1</i>, and <i>PMA1</i> and reduced ROS level, thereby improving cell resistance to acetate. CgBMT5 also improved resistance of <i>Y. lipolytica</i> Po1g to multiple-stress. The lipid titer was improved by 37% in the typical medium. <i>Y. lipolytica-CgBMT5</i> produced 94 mg/L lipid in the undetoxified cellulose hydrolysate.</p>\n </div>","PeriodicalId":134,"journal":{"name":"Biotechnology Journal","volume":"19 10","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/biot.202400397","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrolysis of cellulose generates inhibitors like acetate, suppressing fermentation performance. Here, 25SrRNA methyltransferase CgBMT5 from stress-tolerant yeast Candida glycerinogenes was used as an anti-stress gene element in Saccharomyces cerevisiae and Yarrowia lipolytica. Expression of CgBMT5 in S. cerevisiae increased cell tolerance to acetate, high osmolarity, and heat stress and rescued the delay in cell growth under acetate stress. Ethanol productivity was improved from 0.52 g·(L/h) to 0.69 g·(L/h). CgBMT5 improved GFP expression. The transcription factor ARG81 binds to the promoter of CgBMT5. CgBMT5 upregulated HOG1, GPD1, HAA1, and PMA1 and reduced ROS level, thereby improving cell resistance to acetate. CgBMT5 also improved resistance of Y. lipolytica Po1g to multiple-stress. The lipid titer was improved by 37% in the typical medium. Y. lipolytica-CgBMT5 produced 94 mg/L lipid in the undetoxified cellulose hydrolysate.
Biotechnology JournalBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
2.10%
发文量
123
审稿时长
1.5 months
期刊介绍:
Biotechnology Journal (2019 Journal Citation Reports: 3.543) is fully comprehensive in its scope and publishes strictly peer-reviewed papers covering novel aspects and methods in all areas of biotechnology. Some issues are devoted to a special topic, providing the latest information on the most crucial areas of research and technological advances.
In addition to these special issues, the journal welcomes unsolicited submissions for primary research articles, such as Research Articles, Rapid Communications and Biotech Methods. BTJ also welcomes proposals of Review Articles - please send in a brief outline of the article and the senior author''s CV to the editorial office.
BTJ promotes a special emphasis on:
Systems Biotechnology
Synthetic Biology and Metabolic Engineering
Nanobiotechnology and Biomaterials
Tissue engineering, Regenerative Medicine and Stem cells
Gene Editing, Gene therapy and Immunotherapy
Omics technologies
Industrial Biotechnology, Biopharmaceuticals and Biocatalysis
Bioprocess engineering and Downstream processing
Plant Biotechnology
Biosafety, Biotech Ethics, Science Communication
Methods and Advances.