Caitlin L Gare, Isabella R Palombi, Andrew M White, Marina Chavchich, Michael D Edstein, Aaron Lock, Vicky M Avery, David J Craik, Brendan J McMorran, Nicole Lawrence, Lara R Malins
{"title":"Exploring the Utility of Cell-Penetrating Peptides as Vehicles for the Delivery of Distinct Antimalarial Drug Cargoes.","authors":"Caitlin L Gare, Isabella R Palombi, Andrew M White, Marina Chavchich, Michael D Edstein, Aaron Lock, Vicky M Avery, David J Craik, Brendan J McMorran, Nicole Lawrence, Lara R Malins","doi":"10.1002/cmdc.202400637","DOIUrl":null,"url":null,"abstract":"<p><p>The devastating impact of malaria includes significant mortality and illness worldwide. Increasing resistance of the causative parasite, Plasmodium, to existing antimalarial drugs underscores a need for additional compounds with distinct modes of action in the therapeutic development pipeline. Here we showcase peptide-drug conjugates (PDCs) as an attractive compound class, in which therapeutic or lead antimalarials are chemically conjugated to cell-penetrating peptides. This approach aims to enhance selective uptake into Plasmodium-infected red blood cells and impart additional cytotoxic actions on the intraerythrocytic parasite, thereby enabling targeted drug delivery and dual modes of action. We describe the development of PDCs featuring four compounds with antimalarial activity-primaquine, artesunate, tafenoquine and methotrexate-conjugated to three cell-penetrating peptide scaffolds with varied antiplasmodial activity, including active and inactive analogues of platelet factor 4 derived internalization peptide (PDIP), and a cyclic polyarginine peptide. Development of this diverse set of PDCs featured distinct and adaptable conjugation strategies, to produce conjugates with in vitro antiplasmodial activities ranging from low nanomolar to low micromolar potencies according to the drug cargo and bioactivity of the partner peptide. Overall, this study establishes a strategic and methodological framework for the further development of dual mode of action peptide-drug antimalarial therapeutics.</p>","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":" ","pages":"e202400637"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400637","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The devastating impact of malaria includes significant mortality and illness worldwide. Increasing resistance of the causative parasite, Plasmodium, to existing antimalarial drugs underscores a need for additional compounds with distinct modes of action in the therapeutic development pipeline. Here we showcase peptide-drug conjugates (PDCs) as an attractive compound class, in which therapeutic or lead antimalarials are chemically conjugated to cell-penetrating peptides. This approach aims to enhance selective uptake into Plasmodium-infected red blood cells and impart additional cytotoxic actions on the intraerythrocytic parasite, thereby enabling targeted drug delivery and dual modes of action. We describe the development of PDCs featuring four compounds with antimalarial activity-primaquine, artesunate, tafenoquine and methotrexate-conjugated to three cell-penetrating peptide scaffolds with varied antiplasmodial activity, including active and inactive analogues of platelet factor 4 derived internalization peptide (PDIP), and a cyclic polyarginine peptide. Development of this diverse set of PDCs featured distinct and adaptable conjugation strategies, to produce conjugates with in vitro antiplasmodial activities ranging from low nanomolar to low micromolar potencies according to the drug cargo and bioactivity of the partner peptide. Overall, this study establishes a strategic and methodological framework for the further development of dual mode of action peptide-drug antimalarial therapeutics.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.