Enhancing the Reaction Kinetics and Stability of Co-Free Li-Rich Cathode Materials via a Multifunctional Strategy.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Small Methods Pub Date : 2024-10-09 DOI:10.1002/smtd.202401490
Saichao Li, Dewen Hou, Jiantao Li, Yuanyuan Liu, Guiyang Gao, Qixiang Xu, Mengjian Fan, Laisen Wang, Jie Lin, Dong-Liang Peng, Qingshui Xie, Khalil Amine
{"title":"Enhancing the Reaction Kinetics and Stability of Co-Free Li-Rich Cathode Materials via a Multifunctional Strategy.","authors":"Saichao Li, Dewen Hou, Jiantao Li, Yuanyuan Liu, Guiyang Gao, Qixiang Xu, Mengjian Fan, Laisen Wang, Jie Lin, Dong-Liang Peng, Qingshui Xie, Khalil Amine","doi":"10.1002/smtd.202401490","DOIUrl":null,"url":null,"abstract":"<p><p>Co-free Li-rich layered oxides (CFLLOs) with anionic redox activity are among the most promising cathode materials for high-energy-density and low-cost lithium-ion batteries (LIBs). However, irreversible oxygen release often causes severe structural deterioration, electrolyte decomposition, and the formation of unstable cathode-electrolyte interface (CEI) film with high impedance. Additionally, the elimination of cobalt elements further deteriorates the reaction kinetics, leading to reduced capacity and poor rate performance. Here, a multifunctional strategy is proposed, incorporating Li<sub>2</sub>MnO<sub>3</sub> phase content regulation, micro-nano structure design, and heteroatom substitution. The increased content of Li<sub>2</sub>MnO<sub>3</sub> phase enhances the capacity through oxygen redox. The smaller nanoscale primary particles induce greater tensile strain and introduce more grain boundaries, thereby improving the reaction kinetics and reactivity, while the larger micron-sized secondary particles help to reduce interfacial side reactions. Furthermore, Na⁺ doping modulates the local coordination environment of oxygen, stabilizing both the anion framework and the crystal structure. As a result, the designed cathode exhibits enhanced rate performance, delivering a capacity of 158 mAh g⁻¹ at 5.0 C and improved cyclic stability, with a high capacity retention of 99% after 400 cycles at 1.0 C. This multifunctional strategy holds great promise for advancing the practical application of CFLLOs in next-generation LIBs.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401490"},"PeriodicalIF":10.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401490","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Co-free Li-rich layered oxides (CFLLOs) with anionic redox activity are among the most promising cathode materials for high-energy-density and low-cost lithium-ion batteries (LIBs). However, irreversible oxygen release often causes severe structural deterioration, electrolyte decomposition, and the formation of unstable cathode-electrolyte interface (CEI) film with high impedance. Additionally, the elimination of cobalt elements further deteriorates the reaction kinetics, leading to reduced capacity and poor rate performance. Here, a multifunctional strategy is proposed, incorporating Li2MnO3 phase content regulation, micro-nano structure design, and heteroatom substitution. The increased content of Li2MnO3 phase enhances the capacity through oxygen redox. The smaller nanoscale primary particles induce greater tensile strain and introduce more grain boundaries, thereby improving the reaction kinetics and reactivity, while the larger micron-sized secondary particles help to reduce interfacial side reactions. Furthermore, Na⁺ doping modulates the local coordination environment of oxygen, stabilizing both the anion framework and the crystal structure. As a result, the designed cathode exhibits enhanced rate performance, delivering a capacity of 158 mAh g⁻¹ at 5.0 C and improved cyclic stability, with a high capacity retention of 99% after 400 cycles at 1.0 C. This multifunctional strategy holds great promise for advancing the practical application of CFLLOs in next-generation LIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多功能策略提高无共价富锂离子阴极材料的反应动力学和稳定性
具有阴离子氧化还原活性的无钴富锂层状氧化物(CFLLOs)是高能量密度和低成本锂离子电池(LIB)最有前途的正极材料之一。然而,不可逆的氧释放往往会导致严重的结构退化、电解质分解以及形成具有高阻抗的不稳定阴极-电解质界面(CEI)薄膜。此外,钴元素的消除会进一步恶化反应动力学,导致容量降低和速率性能变差。在此,我们提出了一种多功能策略,将 Li2MnO3 相含量调节、微纳结构设计和杂原子替代结合在一起。增加 Li2MnO3 相的含量可通过氧氧化还原提高容量。较小的纳米级一次粒子会引起更大的拉伸应变,并引入更多的晶界,从而改善反应动力学和反应活性,而较大的微米级二次粒子则有助于减少界面副反应。此外,Na⁺ 的掺杂调节了氧的局部配位环境,从而稳定了阴离子框架和晶体结构。因此,所设计的阴极表现出更高的速率性能,在 5.0 C 时可提供 158 mAh g-¹ 的容量,并提高了循环稳定性,在 1.0 C 下循环 400 次后容量保持率高达 99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
期刊最新文献
Circular Adhesion Substrates Inhibiting Cell Polarization and Proliferation via Graded Texture of Geometric Micropatterns. How the Kinetic Balance Between Charge-Transfer and Mass-Transfer Influences Zinc Anode Stability: An Ultramicroelectrode Study. Label-Free Prediction of Tumor Metastatic Potential via Ramanome. Tuning the Sensitivity of MoS2 Nanopores: From Labeling to Labeling-Free Detection of DNA Methylation. Interface Engineering of Network-Like 1D/2D (NHCNT/Ni─MOF) Hybrid Nanoarchitecture for Electrocatalytic Water Splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1