Automated kapok fiber-based pipette-tip solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for rapid and sensitive analysis of tyrosine kinase inhibitors in plasma
Qianqian Wang , Yuanyuan Zheng , Bowen Deng , Di Chen , Liuqun Jia , Nian Shi
{"title":"Automated kapok fiber-based pipette-tip solid-phase extraction coupled with liquid chromatography-tandem mass spectrometry for rapid and sensitive analysis of tyrosine kinase inhibitors in plasma","authors":"Qianqian Wang , Yuanyuan Zheng , Bowen Deng , Di Chen , Liuqun Jia , Nian Shi","doi":"10.1016/j.chroma.2024.465420","DOIUrl":null,"url":null,"abstract":"<div><div>This study delineates the development of a novel automated pipette-tip solid-phase extraction (SPE) methodology, employing kapok fiber as a naturally efficient and cost-effective adsorbent for the selective extraction of eleven tyrosine kinase inhibitors (TKIs) from plasma. The uniqueness of this method lies in its assembly, where kapok fibers are ingeniously wrapped around a stainless-steel spring within the pipette tip, ensuring an obstruction-free central space for effortless solution aspiration and dispensation. This design significantly minimizes backpressure, enhancing operational efficiency and ensuring compatibility with pipettors, including the implementation of an electric pipettor to streamline the sample preparation process and facilitate automation. The method's analytical performance, rigorously validated through liquid chromatography-tandem mass spectrometry, exhibits outstanding linearity in ranges of 0.1/0.5–200 ng mL<sup>-1</sup> (R² > 0.993), commendable accuracy (86.3%–114.8%), and consistent precision (3.4–11.3%), alongside remarkably low detection limits that span from 0.024 to 0.130 ng mL<sup>-1</sup>. The assembly of kapok fiber within the pipette tip, in this unique configuration, results in a practical, cost-effective, eco-friendly, and automated pipette-tip SPE method. This innovation signifies a significant advancement in bioanalytical methodologies, offering an efficient and sustainable approach for extracting analytes from complex biological samples. This process notably enhances both the sensitivity and selectivity of subsequent instrumental analyses.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1736 ","pages":"Article 465420"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324007945","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study delineates the development of a novel automated pipette-tip solid-phase extraction (SPE) methodology, employing kapok fiber as a naturally efficient and cost-effective adsorbent for the selective extraction of eleven tyrosine kinase inhibitors (TKIs) from plasma. The uniqueness of this method lies in its assembly, where kapok fibers are ingeniously wrapped around a stainless-steel spring within the pipette tip, ensuring an obstruction-free central space for effortless solution aspiration and dispensation. This design significantly minimizes backpressure, enhancing operational efficiency and ensuring compatibility with pipettors, including the implementation of an electric pipettor to streamline the sample preparation process and facilitate automation. The method's analytical performance, rigorously validated through liquid chromatography-tandem mass spectrometry, exhibits outstanding linearity in ranges of 0.1/0.5–200 ng mL-1 (R² > 0.993), commendable accuracy (86.3%–114.8%), and consistent precision (3.4–11.3%), alongside remarkably low detection limits that span from 0.024 to 0.130 ng mL-1. The assembly of kapok fiber within the pipette tip, in this unique configuration, results in a practical, cost-effective, eco-friendly, and automated pipette-tip SPE method. This innovation signifies a significant advancement in bioanalytical methodologies, offering an efficient and sustainable approach for extracting analytes from complex biological samples. This process notably enhances both the sensitivity and selectivity of subsequent instrumental analyses.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.