{"title":"The emerging application of LC-based metallomics techniques to unravel the bioinorganic chemistry of toxic metal(loid)s","authors":"Negar Pourzadi, Jürgen Gailer","doi":"10.1016/j.chroma.2024.465409","DOIUrl":null,"url":null,"abstract":"<div><div>The on-going anthropogenic emission of toxic metal(loid) species into the environment contaminates the food supply and drinking water resources in various parts of the world. Given that inorganic pollutants cannot be degraded, their increased influx into the bloodstream of babies, children and pregnant women is inevitable. Since the ramifications of the ensuing environmental exposure on human health remain poorly defined, fundamentally new insight into their bioinorganic chemistry in organisms is urgently needed. Based on the flow of dietary constituents through organisms, the interaction of toxic metal(loid) species with biomolecules in the bloodstream deserve particular attention as they play an integral role in the mechanisms of their chronic toxicity. Gaining insight into these bioinorganic processes is hampered by the biological complexity of plasma/red blood cells and the low concentrations of the metal(loid) species of interest, but can be overcome by employing LC techniques hyphenated to atomic spectroscopic detectors (i.e. metallomics techniques). This perspective aims to highlight the potential of unconventional hyphenated separation modes to advance our understanding of the bioinorganic chemistry of toxic metal(loid) species in the bloodstream-organ system. Four examples are illustrated. The application of anion-exchange (AEX) and size-exclusion chromatography (SEC) provided new insight into the blood-based bioinorganic mechanisms that direct Cd<sup>2+</sup> and MeHg<sup>+</sup> to target organs. AEX chromatography also allowed to observe the formation of complexes between Hg<sup>2+</sup> and MeHg<sup>+</sup> with L-cysteine at pH 7.4, that are implicated in their organ uptake. Lastly, the application of reversed phase (RP) chromatography revealed a possible cytosolic mechanism by which N-acetyl-L-cysteine binds to MeHg<sup>+</sup> in the presence of cytosolic glutathione (GSH). New insight into other bioinorganic processes may advance the regulatory framework to better protect public health.</div></div>","PeriodicalId":347,"journal":{"name":"Journal of Chromatography A","volume":"1736 ","pages":"Article 465409"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography A","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021967324007830","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The on-going anthropogenic emission of toxic metal(loid) species into the environment contaminates the food supply and drinking water resources in various parts of the world. Given that inorganic pollutants cannot be degraded, their increased influx into the bloodstream of babies, children and pregnant women is inevitable. Since the ramifications of the ensuing environmental exposure on human health remain poorly defined, fundamentally new insight into their bioinorganic chemistry in organisms is urgently needed. Based on the flow of dietary constituents through organisms, the interaction of toxic metal(loid) species with biomolecules in the bloodstream deserve particular attention as they play an integral role in the mechanisms of their chronic toxicity. Gaining insight into these bioinorganic processes is hampered by the biological complexity of plasma/red blood cells and the low concentrations of the metal(loid) species of interest, but can be overcome by employing LC techniques hyphenated to atomic spectroscopic detectors (i.e. metallomics techniques). This perspective aims to highlight the potential of unconventional hyphenated separation modes to advance our understanding of the bioinorganic chemistry of toxic metal(loid) species in the bloodstream-organ system. Four examples are illustrated. The application of anion-exchange (AEX) and size-exclusion chromatography (SEC) provided new insight into the blood-based bioinorganic mechanisms that direct Cd2+ and MeHg+ to target organs. AEX chromatography also allowed to observe the formation of complexes between Hg2+ and MeHg+ with L-cysteine at pH 7.4, that are implicated in their organ uptake. Lastly, the application of reversed phase (RP) chromatography revealed a possible cytosolic mechanism by which N-acetyl-L-cysteine binds to MeHg+ in the presence of cytosolic glutathione (GSH). New insight into other bioinorganic processes may advance the regulatory framework to better protect public health.
期刊介绍:
The Journal of Chromatography A provides a forum for the publication of original research and critical reviews on all aspects of fundamental and applied separation science. The scope of the journal includes chromatography and related techniques, electromigration techniques (e.g. electrophoresis, electrochromatography), hyphenated and other multi-dimensional techniques, sample preparation, and detection methods such as mass spectrometry. Contributions consist mainly of research papers dealing with the theory of separation methods, instrumental developments and analytical and preparative applications of general interest.