{"title":"Insect Sterols and Steroids.","authors":"René Lafont, Laurence Dinan","doi":"10.1007/5584_2024_823","DOIUrl":null,"url":null,"abstract":"<p><p>Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2024_823","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
期刊介绍:
Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.