Taraka Sai Pavan Grandhi, Makda Mebrahtu, Ryan Musso, Alexis Fullman, Brady Nifong, Katrina Wisdom, Terrence T Roh, Matthew Sender, Derek Poore, Claire E Macdougall, Ravit Oren, Sue Griffin, Aaron T Cheng, Jason E Ekert
{"title":"A microphysiological assay for studying T-cell chemotaxis, trafficking and tumor killing.","authors":"Taraka Sai Pavan Grandhi, Makda Mebrahtu, Ryan Musso, Alexis Fullman, Brady Nifong, Katrina Wisdom, Terrence T Roh, Matthew Sender, Derek Poore, Claire E Macdougall, Ravit Oren, Sue Griffin, Aaron T Cheng, Jason E Ekert","doi":"10.1088/1758-5090/ad847f","DOIUrl":null,"url":null,"abstract":"<p><p>Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complex<i>in-vitro</i>models allow re-creation of<i>in-vivo</i>tumor complexities in an<i>in-vitro</i>setting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complex<i>in vitro</i>MPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (∼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad847f","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tumors in patients non-responsive to immunotherapy harbor a series of barriers that impede the efficacy of effector T-cells. Consequently, therapeutically modulating the chemotaxis machinery to enable effector T cell infiltration and function in the tumor could result in more successful therapeutic outcomes. Complexin-vitromodels allow re-creation ofin-vivotumor complexities in anin-vitrosetting, allowing improved translatability to patient biology at the laboratory scale. We identified a gap in available industrial scale microphysiological (MPS) assays for faster validation of targets and strategies that enable T-cell chemotaxis and effector function within tumor microenvironments. Using a commercially available, 96-chip 2-lane microfluidic assay system, we present a novel, scalable, complexin vitroMPS assay to study 3D T-cell chemotaxis and function within native, extracellular matrix (ECM)-rich multicellular tumor environments. Activated or naïve CD3+ T-cells stained with far-red nuclear stain responded to the chemokine gradients generated within the matrigel-collagen ECM by migrating into the microfluidic channel (∼5 mm horizontal window), in a concentration- and cell type-dependent manner. Furthermore, we observed and tracked chemotaxis and cancer cell killing function of antigen-specific CD4.CD8. chimeric antigen receptor (CAR)-T cells that responded to CXCR3 agonist gradient built through the expansive 5 mm of cancer cell colony containing stroma. The 2-lane assay system yielded useful information regarding donor and dose-dependent differences in CAR-T cell chemotaxis and tumor killing. The scalable assay system allows a granular window into immune cell migration and function in tissue spaces beyond endothelium, addressing a missing gap in studying tissue-specific immune cell chemotaxis and function to bring forward advancements in cancer immunotherapy.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).