The expression of the formin Fhod3 in mouse tongue striated muscle.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-11-07 Epub Date: 2024-10-10 DOI:10.1247/csf.24044
Hikaru Nakagawa, Yohko Kage, Ayako Miura, Hikmawan Wahyu Sulistomo, Sho Matsuyama, Yoshihiro Yamashita, Ryu Takeya
{"title":"The expression of the formin Fhod3 in mouse tongue striated muscle.","authors":"Hikaru Nakagawa, Yohko Kage, Ayako Miura, Hikmawan Wahyu Sulistomo, Sho Matsuyama, Yoshihiro Yamashita, Ryu Takeya","doi":"10.1247/csf.24044","DOIUrl":null,"url":null,"abstract":"<p><p>The sarcomere is the contractile unit of striated muscle and is composed of actin and myosin filaments. There is increasing evidence to support that actin assembly mediated by Fhod3, a member of the formin family of proteins, is critical for sarcomere formation and maintenance in cardiac muscle. Fhod3, which is abundantly expressed in the heart, localizes to the center of sarcomeres and contributes to the regulation of the cardiac function, as evidenced by the fact that mutations in Fhod3 cause cardiomyopathy. However, the role of Fhod3 in skeletal muscle, another type of striated muscle, is unclear. We herein show that Fhod3 is expressed in the tongue at both mRNA and protein levels, although in smaller amounts than in the heart. To determine the physiological role of Fhod3 expressed in the tongue, we generated embryos lacking Fhod3 in the tongue. The tongue tissue of the Fhod3-depleted embryos did not show any significant structural defects, suggesting that Fhod3 is dispensable for normal development of the mouse tongue. Unexpectedly, the immunostaining analysis revealed the absence of specific sarcomeric signals for Fhod3 in the wild-type tongue when compared to the Fhod3-depleted tongue as a negative control, despite the use of antibodies that had previously been validated by immunostaining of heart tissues. Taken together, although Fhod3 protein is expressed at a significant level in the tongue, Fhod3 in the tongue does not appear to exhibit the same sarcomeric pattern as observed in the heart, suggesting a different role for Fhod3 in the tongue muscles.Key words: actin, formin, sarcomere, striated muscle.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1247/csf.24044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The sarcomere is the contractile unit of striated muscle and is composed of actin and myosin filaments. There is increasing evidence to support that actin assembly mediated by Fhod3, a member of the formin family of proteins, is critical for sarcomere formation and maintenance in cardiac muscle. Fhod3, which is abundantly expressed in the heart, localizes to the center of sarcomeres and contributes to the regulation of the cardiac function, as evidenced by the fact that mutations in Fhod3 cause cardiomyopathy. However, the role of Fhod3 in skeletal muscle, another type of striated muscle, is unclear. We herein show that Fhod3 is expressed in the tongue at both mRNA and protein levels, although in smaller amounts than in the heart. To determine the physiological role of Fhod3 expressed in the tongue, we generated embryos lacking Fhod3 in the tongue. The tongue tissue of the Fhod3-depleted embryos did not show any significant structural defects, suggesting that Fhod3 is dispensable for normal development of the mouse tongue. Unexpectedly, the immunostaining analysis revealed the absence of specific sarcomeric signals for Fhod3 in the wild-type tongue when compared to the Fhod3-depleted tongue as a negative control, despite the use of antibodies that had previously been validated by immunostaining of heart tissues. Taken together, although Fhod3 protein is expressed at a significant level in the tongue, Fhod3 in the tongue does not appear to exhibit the same sarcomeric pattern as observed in the heart, suggesting a different role for Fhod3 in the tongue muscles.Key words: actin, formin, sarcomere, striated muscle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形蛋白 Fhod3 在小鼠舌横纹肌中的表达。
肌节是横纹肌的收缩单位,由肌动蛋白和肌球蛋白丝组成。越来越多的证据表明,由甲形蛋白家族成员 Fhod3 介导的肌动蛋白组装对心肌中的肌节形成和维持至关重要。Fhod3 在心脏中大量表达,定位于肌节中心,有助于调节心脏功能,Fhod3 基因突变导致心肌病就是证明。然而,Fhod3 在骨骼肌(另一种横纹肌)中的作用尚不清楚。我们在本文中发现,Fhod3 在舌部的 mRNA 和蛋白质水平均有表达,但表达量小于在心脏中的表达量。为了确定在舌头中表达的 Fhod3 的生理作用,我们生成了舌头中缺乏 Fhod3 的胚胎。缺失Fhod3的胚胎的舌头组织没有显示出任何明显的结构缺陷,这表明Fhod3对于小鼠舌头的正常发育是不可或缺的。出乎意料的是,免疫染色分析表明,与作为阴性对照的缺失 Fhod3 的舌头相比,野生型舌头中没有 Fhod3 的特异性肌节信号,尽管使用的抗体之前已通过心脏组织的免疫染色进行了验证。综上所述,尽管Fhod3蛋白在舌中的表达水平很高,但舌中的Fhod3似乎并没有表现出在心脏中观察到的相同的肌节模式,这表明Fhod3在舌肌中扮演着不同的角色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1