{"title":"Toxicodynamics of cadmium in the green mussel Perna viridis (Linnaeus, 1758) using bioenergetic and physiological biomarkers.","authors":"Kariyil Veettil Neethu, Neethu Xavier, Punnakkal Hari Praved, Naduvath Deepak Sankar, Punnathi Anilkumar Athira, Sivasankaran Bijoy Nandan, Kandussery Joseph Joseph, Shambanagouda Rudragouda Marigoudar, Krishna Venkatarama Sharma","doi":"10.1007/s10646-024-02814-3","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluated the toxicity of cadmium (Cd) on the green mussel Perna viridis, aiming to identify toxicological endpoints and investigate its responses across physiological, bioenergetic, and biochemical parameters. The 96-hour LC<sub>50</sub> value for Cd in P. viridis was 3.03 ± 0.12 mg L<sup>-1</sup>, with a 95% confidence interval of 2.35-3.91 mg L<sup>-1</sup>. Chronic toxicity tests revealed a No Observable Effect Concentration (NOEC), Lowest Observable Effect Concentration (LOEC), and chronic toxicity values of 0.20, 0.37, and 0.29 mg L<sup>-1</sup>, respectively. Cadmium accumulation in treated mussels increased 46- to 215-fold compared to the control group. Superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase levels in exposed mussels exhibited a significant increase compared to the control group. The redox index ratio, acetylcholinesterase activity, and lysosomal membrane stability decreased with increasing exposure concentrations. Levels of reduced and oxidized glutathione, glutathione reductase, lipid peroxidation, and metallothionein-like proteins increased in exposed mussels. Clearance rate, respiration rate, and excretion rate decreased in a dose-dependent manner. Protein, carbohydrate, and lipid levels decreased with increasing exposure concentration (p < 0.001). Mitochondrial electron transport system activity increased, while cellular energy allocation (p < 0.001) and scope for growth decreased in a dose-dependent manner (p < 0.01). The significant increase in antioxidants suggests heightened oxidative stress in mussels under Cd exposure. The physiological activities of the mussels were severely affected, ultimately leading to a reduced scope for growth. The toxicological data generated in this study contribute to the development of seawater quality criteria for the metal Cd.</p>","PeriodicalId":11497,"journal":{"name":"Ecotoxicology","volume":" ","pages":"1222-1241"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10646-024-02814-3","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study evaluated the toxicity of cadmium (Cd) on the green mussel Perna viridis, aiming to identify toxicological endpoints and investigate its responses across physiological, bioenergetic, and biochemical parameters. The 96-hour LC50 value for Cd in P. viridis was 3.03 ± 0.12 mg L-1, with a 95% confidence interval of 2.35-3.91 mg L-1. Chronic toxicity tests revealed a No Observable Effect Concentration (NOEC), Lowest Observable Effect Concentration (LOEC), and chronic toxicity values of 0.20, 0.37, and 0.29 mg L-1, respectively. Cadmium accumulation in treated mussels increased 46- to 215-fold compared to the control group. Superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase levels in exposed mussels exhibited a significant increase compared to the control group. The redox index ratio, acetylcholinesterase activity, and lysosomal membrane stability decreased with increasing exposure concentrations. Levels of reduced and oxidized glutathione, glutathione reductase, lipid peroxidation, and metallothionein-like proteins increased in exposed mussels. Clearance rate, respiration rate, and excretion rate decreased in a dose-dependent manner. Protein, carbohydrate, and lipid levels decreased with increasing exposure concentration (p < 0.001). Mitochondrial electron transport system activity increased, while cellular energy allocation (p < 0.001) and scope for growth decreased in a dose-dependent manner (p < 0.01). The significant increase in antioxidants suggests heightened oxidative stress in mussels under Cd exposure. The physiological activities of the mussels were severely affected, ultimately leading to a reduced scope for growth. The toxicological data generated in this study contribute to the development of seawater quality criteria for the metal Cd.
期刊介绍:
Ecotoxicology is an international journal devoted to the publication of fundamental research on the effects of toxic chemicals on populations, communities and terrestrial, freshwater and marine ecosystems. It aims to elucidate mechanisms and processes whereby chemicals exert their effects on ecosystems and the impact caused at the population or community level. The journal is not biased with respect to taxon or biome, and papers that indicate possible new approaches to regulation and control of toxic chemicals and those aiding in formulating ways of conserving threatened species are particularly welcome. Studies on individuals should demonstrate linkage to population effects in clear and quantitative ways. Laboratory studies must show a clear linkage to specific field situations. The journal includes not only original research papers but technical notes and review articles, both invited and submitted. A strong, broadly based editorial board ensures as wide an international coverage as possible.