Yash Chhabra, Helle Bielefeldt-Ohmann, Tania Louise Brooks, Andrew James Brooks, Michael J Waters
{"title":"Roles of Growth Hormone-Dependent JAK-STAT5 and Lyn Kinase Signaling in Determining Lifespan and Cancer Incidence.","authors":"Yash Chhabra, Helle Bielefeldt-Ohmann, Tania Louise Brooks, Andrew James Brooks, Michael J Waters","doi":"10.1210/endocr/bqae136","DOIUrl":null,"url":null,"abstract":"<p><p>In rodents, loss of growth hormone (GH) or its receptor is associated with extended lifespan. We aimed to determine the signaling process resulting in this longevity using GH receptor (GHR)-mutant mice with key signaling pathways deleted and correlate this with cancer incidence and expression of genes associated with longevity. GHR uses both canonical janus kinase (JAK)2-signal transducer and activator of transcription (STAT) signaling as well as signaling via the LYN-ERK1/2 pathway. We used C57BL/6 mice with loss of key receptor tyrosines and truncation resulting in 1) loss of most STAT5 response to GH; 2) total inability to generate STAT5 to GH; 3) loss of Box1 to prevent activation of JAK2 but not LYN kinase; or 4) total knockout of the receptor. For each mutant we analyzed lifespan, histopathology to determine likely cause of death, and hepatic gene and protein expression. The extended lifespan is evident in the Box1-mutant males (retains Lyn activation), which have a median lifespan of 1016 days compared to 890 days for the Ghr-/- males. In the females, GhrBox1-/- mice have a median lifespan of 970 days compared to 911 days for the knockout females. Sexually dimorphic GHR-STAT5 is repressive for longevity, since its removal results in a median lifespan of 1003 days in females compared to 734 days for wild-type females. Numerous transcripts related to insulin sensitivity, oxidative stress response, and mitochondrial function are regulated by GHR-STAT5; however, LYN-responsive genes involve DNA repair, cell cycle control, and anti-inflammatory response. There appears to be a yin-yang relationship between JAK2 and LYN that determines lifespan.</p>","PeriodicalId":11819,"journal":{"name":"Endocrinology","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500606/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1210/endocr/bqae136","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
In rodents, loss of growth hormone (GH) or its receptor is associated with extended lifespan. We aimed to determine the signaling process resulting in this longevity using GH receptor (GHR)-mutant mice with key signaling pathways deleted and correlate this with cancer incidence and expression of genes associated with longevity. GHR uses both canonical janus kinase (JAK)2-signal transducer and activator of transcription (STAT) signaling as well as signaling via the LYN-ERK1/2 pathway. We used C57BL/6 mice with loss of key receptor tyrosines and truncation resulting in 1) loss of most STAT5 response to GH; 2) total inability to generate STAT5 to GH; 3) loss of Box1 to prevent activation of JAK2 but not LYN kinase; or 4) total knockout of the receptor. For each mutant we analyzed lifespan, histopathology to determine likely cause of death, and hepatic gene and protein expression. The extended lifespan is evident in the Box1-mutant males (retains Lyn activation), which have a median lifespan of 1016 days compared to 890 days for the Ghr-/- males. In the females, GhrBox1-/- mice have a median lifespan of 970 days compared to 911 days for the knockout females. Sexually dimorphic GHR-STAT5 is repressive for longevity, since its removal results in a median lifespan of 1003 days in females compared to 734 days for wild-type females. Numerous transcripts related to insulin sensitivity, oxidative stress response, and mitochondrial function are regulated by GHR-STAT5; however, LYN-responsive genes involve DNA repair, cell cycle control, and anti-inflammatory response. There appears to be a yin-yang relationship between JAK2 and LYN that determines lifespan.
期刊介绍:
The mission of Endocrinology is to be the authoritative source of emerging hormone science and to disseminate that new knowledge to scientists, clinicians, and the public in a way that will enable "hormone science to health." Endocrinology welcomes the submission of original research investigating endocrine systems and diseases at all levels of biological organization, incorporating molecular mechanistic studies, such as hormone-receptor interactions, in all areas of endocrinology, as well as cross-disciplinary and integrative studies. The editors of Endocrinology encourage the submission of research in emerging areas not traditionally recognized as endocrinology or metabolism in addition to the following traditionally recognized fields: Adrenal; Bone Health and Osteoporosis; Cardiovascular Endocrinology; Diabetes; Endocrine-Disrupting Chemicals; Endocrine Neoplasia and Cancer; Growth; Neuroendocrinology; Nuclear Receptors and Their Ligands; Obesity; Reproductive Endocrinology; Signaling Pathways; and Thyroid.