{"title":"Disruption of the signal recognition particle pathway leading to impaired growth, sugar metabolism and acid resistance of Lactococcus lactis","authors":"Meng Wang, Yanying Yue, Xiaoce Zhu, Mengjie Wang, Yifei Zhang, Jian Kong, Tingting Guo","doi":"10.1016/j.ijfoodmicro.2024.110929","DOIUrl":null,"url":null,"abstract":"<div><div><em>Lactococcus lactis</em> is a well-known workhorse for dairy products, whose important industrial traits are tightly associated with numerous cytoplasmic membrane proteins. However, roles of the signal recognition particle (SRP) pathway responsible for membrane protein targeting have not been studied in <em>L. lactis</em>. In this work, the putative genes <em>ffh</em> and <em>ftsY</em> encoding SRP pathway components were identified in the genome of <em>L. lactis</em> NZ9000. Experimental evidence showed that sequence mutation in either the <em>ffh</em> or <em>ftsY</em> was not lethal, but prolonged the lag phase of the resultant mutants Δffh and ΔftsY by 2 h and lowered their biomass to 85.7 % of the wild type under static conditions, as well as deprived the mutants of improved growth capacity under aerobic respiration conditions. Besides, the speeds of glucose consumption and lactate production were significantly decreased in the mutants. Then, the impact of the SPR components on acid resistance was detected, showing that the <em>ffh</em> and <em>ftsY</em> were transcriptionally upregulated by 3.02 ± 1.21 and 8.66 ± 1.01-fold in the wild type during acid challenge at pH 3.0, and cell survival of the Δffh and ΔftsY decreased by10- and 100-fold compared with the wild type. To explore the possible mechanism about the SRP pathway involved in the above physiological traits, proteomics analysis was performed and revealed that disruption of the Ffh or FtsY led to decrease in ribosomal proteins, but increase in DnaK, GroEL and heat shock protein GrpE, indicating that the SRP pathway was closely linked to protein synthesis and folding in <em>L. lactis</em>. Decrease in the fructose-bisphosphate aldolase, respiratory complexes NADH dehydrogenase, as well as glutamate decarboxylase was also detected in the Δffh and ΔftsY, which is consistent with the phenomena of impaired sugar metabolism and acid resistance. Our results demonstrated the dispensable SRP pathway could contribute to the maintenance of metabolism homeostasis and acid resistance of <em>L. lactis</em>.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"426 ","pages":"Article 110929"},"PeriodicalIF":5.0000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160524003738","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lactococcus lactis is a well-known workhorse for dairy products, whose important industrial traits are tightly associated with numerous cytoplasmic membrane proteins. However, roles of the signal recognition particle (SRP) pathway responsible for membrane protein targeting have not been studied in L. lactis. In this work, the putative genes ffh and ftsY encoding SRP pathway components were identified in the genome of L. lactis NZ9000. Experimental evidence showed that sequence mutation in either the ffh or ftsY was not lethal, but prolonged the lag phase of the resultant mutants Δffh and ΔftsY by 2 h and lowered their biomass to 85.7 % of the wild type under static conditions, as well as deprived the mutants of improved growth capacity under aerobic respiration conditions. Besides, the speeds of glucose consumption and lactate production were significantly decreased in the mutants. Then, the impact of the SPR components on acid resistance was detected, showing that the ffh and ftsY were transcriptionally upregulated by 3.02 ± 1.21 and 8.66 ± 1.01-fold in the wild type during acid challenge at pH 3.0, and cell survival of the Δffh and ΔftsY decreased by10- and 100-fold compared with the wild type. To explore the possible mechanism about the SRP pathway involved in the above physiological traits, proteomics analysis was performed and revealed that disruption of the Ffh or FtsY led to decrease in ribosomal proteins, but increase in DnaK, GroEL and heat shock protein GrpE, indicating that the SRP pathway was closely linked to protein synthesis and folding in L. lactis. Decrease in the fructose-bisphosphate aldolase, respiratory complexes NADH dehydrogenase, as well as glutamate decarboxylase was also detected in the Δffh and ΔftsY, which is consistent with the phenomena of impaired sugar metabolism and acid resistance. Our results demonstrated the dispensable SRP pathway could contribute to the maintenance of metabolism homeostasis and acid resistance of L. lactis.
期刊介绍:
The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.