{"title":"Determining pair distribution functions of thin films using laboratory-based X-ray sources.","authors":"Johan Bylin, Vassilios Kapaklis, Gunnar K Pálsson","doi":"10.1107/S1600576724006368","DOIUrl":null,"url":null,"abstract":"<p><p>This article demonstrates the feasibility of obtaining accurate pair distribution functions of thin amorphous films down to 80 nm, using modern laboratory-based X-ray sources. The pair distribution functions are obtained using a single diffraction scan without the requirement of additional scans of the substrate or of the air. By using a crystalline substrate combined with an oblique scattering geometry, most of the Bragg scattering of the substrate is avoided, rendering the substrate Compton scattering the primary contribution. By utilizing a discriminating energy filter, available in the latest generation of modern detectors, it is demonstrated that the Compton intensity can further be reduced to negligible levels at higher wavevector values. Scattering from the sample holder and the air is minimized by the systematic selection of pixels in the detector image based on the projected detection footprint of the sample and the use of a 3D-printed sample holder. Finally, X-ray optical effects in the absorption factors and the ratios between the Compton intensity of the substrate and film are taken into account by using a theoretical tool that simulates the electric field inside the film and the substrate, which aids in planning both the sample design and the measurement protocol.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"57 Pt 5","pages":"1373-1383"},"PeriodicalIF":6.1000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724006368","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
This article demonstrates the feasibility of obtaining accurate pair distribution functions of thin amorphous films down to 80 nm, using modern laboratory-based X-ray sources. The pair distribution functions are obtained using a single diffraction scan without the requirement of additional scans of the substrate or of the air. By using a crystalline substrate combined with an oblique scattering geometry, most of the Bragg scattering of the substrate is avoided, rendering the substrate Compton scattering the primary contribution. By utilizing a discriminating energy filter, available in the latest generation of modern detectors, it is demonstrated that the Compton intensity can further be reduced to negligible levels at higher wavevector values. Scattering from the sample holder and the air is minimized by the systematic selection of pixels in the detector image based on the projected detection footprint of the sample and the use of a 3D-printed sample holder. Finally, X-ray optical effects in the absorption factors and the ratios between the Compton intensity of the substrate and film are taken into account by using a theoretical tool that simulates the electric field inside the film and the substrate, which aids in planning both the sample design and the measurement protocol.
这篇文章展示了利用现代实验室 X 射线源获取小至 80 纳米非晶薄膜的精确线对分布函数的可行性。利用单次衍射扫描即可获得线对分布函数,无需对基底或空气进行额外扫描。通过使用晶体基底和斜向散射几何形状,避免了基底的大部分布拉格散射,从而使基底康普顿散射成为主要贡献。通过利用最新一代现代探测器中的辨别能量滤波器,可以证明在较高的波矢值下,康普顿强度可以进一步降低到可以忽略不计的水平。根据样品的预测探测足迹系统地选择探测器图像中的像素,并使用三维打印样品支架,可以最大限度地减少来自样品支架和空气的散射。最后,通过使用模拟薄膜和基片内部电场的理论工具,考虑了基片和薄膜的吸收因子和康普顿强度比中的 X 射线光学效应,这有助于规划样品设计和测量方案。
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.